Aromātai
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
Whakaroha
-x+4-\frac{4}{x}+\frac{5}{x^{2}}-\frac{1}{x^{3}}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x}{x}.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{2x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Kia whakarewa i te \frac{2x+1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tuhia te \frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} hei hautanga kotahi.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Kia whakarewa i te \frac{x-1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x-2 ki te \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
Mahia ngā whakarea i roto o \left(x-2\right)x+1.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Me whakarea te \frac{\left(x-1\right)^{2}}{x^{2}} ki te \frac{x^{2}-2x+1}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}\left(1+x\right) me x^{3} ko \left(x+1\right)x^{3}. Whakareatia \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} ki te \frac{x}{x}. Whakareatia \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} ki te \frac{x+1}{x+1}.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} me \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Mahia ngā whakarea i roto o \left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right).
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Whakakotahitia ngā kupu rite i 4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
Tauwehea te x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+1\right)x^{3} me x\left(x+1\right) ko \left(x+1\right)x^{3}. Whakareatia \frac{2x+1}{x\left(x+1\right)} ki te \frac{x^{2}}{x^{2}}.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Tā te mea he rite te tauraro o \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} me \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
Mahia ngā whakarea i roto o 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
Whakakotahitia ngā kupu rite i 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
\frac{\left(\frac{2x}{x}+\frac{1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{x}{x}.
\frac{\left(\frac{2x+1}{x}\right)^{2}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{2x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Kia whakarewa i te \frac{2x+1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(1-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tuhia te \frac{\frac{\left(2x+1\right)^{2}}{x^{2}}}{1+x} hei hautanga kotahi.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x}{x}-\frac{1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 1 ki te \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\left(\frac{x-1}{x}\right)^{2}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{x}{x} me \frac{1}{x}, me tango rāua mā te tango i ō raua taurunga.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(x+\frac{1}{x}-2\right)-\frac{2x+1}{x^{2}+x}
Kia whakarewa i te \frac{x-1}{x} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\left(\frac{\left(x-2\right)x}{x}+\frac{1}{x}\right)-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia x-2 ki te \frac{x}{x}.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{\left(x-2\right)x+1}{x}-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{\left(x-2\right)x}{x} me \frac{1}{x}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}}{x^{2}}\times \frac{x^{2}-2x+1}{x}-\frac{2x+1}{x^{2}+x}
Mahia ngā whakarea i roto o \left(x-2\right)x+1.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{2}x}-\frac{2x+1}{x^{2}+x}
Me whakarea te \frac{\left(x-1\right)^{2}}{x^{2}} ki te \frac{x^{2}-2x+1}{x} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}}-\frac{2x+1}{x^{2}+x}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 1 kia riro ai te 3.
\frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}}-\frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x^{2}\left(1+x\right) me x^{3} ko \left(x+1\right)x^{3}. Whakareatia \frac{\left(2x+1\right)^{2}}{x^{2}\left(1+x\right)} ki te \frac{x}{x}. Whakareatia \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)}{x^{3}} ki te \frac{x+1}{x+1}.
\frac{\left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Tā te mea he rite te tauraro o \frac{\left(2x+1\right)^{2}x}{\left(x+1\right)x^{3}} me \frac{\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right)}{\left(x+1\right)x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Mahia ngā whakarea i roto o \left(2x+1\right)^{2}x-\left(x-1\right)^{2}\left(x^{2}-2x+1\right)\left(x+1\right).
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x^{2}+x}
Whakakotahitia ngā kupu rite i 4x^{3}+4x^{2}+x-x^{5}+x^{4}+x^{3}-x^{2}+2x^{4}-2x^{3}-2x^{2}+2x-x^{3}+x^{2}+x-1.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{2x+1}{x\left(x+1\right)}
Tauwehea te x^{2}+x.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}-\frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(x+1\right)x^{3} me x\left(x+1\right) ko \left(x+1\right)x^{3}. Whakareatia \frac{2x+1}{x\left(x+1\right)} ki te \frac{x^{2}}{x^{2}}.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}
Tā te mea he rite te tauraro o \frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}} me \frac{\left(2x+1\right)x^{2}}{\left(x+1\right)x^{3}}, me tango rāua mā te tango i ō raua taurunga.
\frac{2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}}{\left(x+1\right)x^{3}}
Mahia ngā whakarea i roto o 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-\left(2x+1\right)x^{2}.
\frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}
Whakakotahitia ngā kupu rite i 2x^{3}+2x^{2}+4x-x^{5}+3x^{4}-1-2x^{3}-x^{2}.
\frac{\left(x+1\right)\left(-x^{4}+4x^{3}-4x^{2}+5x-1\right)}{\left(x+1\right)x^{3}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}+4x-x^{5}+3x^{4}-1}{\left(x+1\right)x^{3}}.
\frac{-x^{4}+4x^{3}-4x^{2}+5x-1}{x^{3}}
Me whakakore tahi te x+1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}