Aromātai
\frac{8}{729}\approx 0.010973937
Tauwehe
\frac{2 ^ {3}}{3 ^ {6}} = 0.010973936899862825
Pātaitai
Arithmetic
\frac { ( 18 ^ { 2 } ) ^ { - 2 } \cdot 81 } { 6 ^ { 3 } \cdot 108 \cdot 24 ^ { - 4 } } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{18^{-4}\times 81}{6^{3}\times 108\times 24^{-4}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te -2 kia riro ai te -4.
\frac{3\times 18^{-4}}{4\times 6^{3}\times 24^{-4}}
Me whakakore tahi te 27 i te taurunga me te tauraro.
\frac{3\times \frac{1}{104976}}{4\times 6^{3}\times 24^{-4}}
Tātaihia te 18 mā te pū o -4, kia riro ko \frac{1}{104976}.
\frac{\frac{1}{34992}}{4\times 6^{3}\times 24^{-4}}
Whakareatia te 3 ki te \frac{1}{104976}, ka \frac{1}{34992}.
\frac{\frac{1}{34992}}{4\times 216\times 24^{-4}}
Tātaihia te 6 mā te pū o 3, kia riro ko 216.
\frac{\frac{1}{34992}}{864\times 24^{-4}}
Whakareatia te 4 ki te 216, ka 864.
\frac{\frac{1}{34992}}{864\times \frac{1}{331776}}
Tātaihia te 24 mā te pū o -4, kia riro ko \frac{1}{331776}.
\frac{\frac{1}{34992}}{\frac{1}{384}}
Whakareatia te 864 ki te \frac{1}{331776}, ka \frac{1}{384}.
\frac{1}{34992}\times 384
Whakawehe \frac{1}{34992} ki te \frac{1}{384} mā te whakarea \frac{1}{34992} ki te tau huripoki o \frac{1}{384}.
\frac{8}{729}
Whakareatia te \frac{1}{34992} ki te 384, ka \frac{8}{729}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}