Whakaoti mō x
x = \frac{13 \sqrt{137} + 152}{49} \approx 6.207369364
x=\frac{152-13\sqrt{137}}{49}\approx -0.003287731
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{289x^{2}-34x+1}{13^{2}}=\left(x-1\right)\times 2x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(17x-1\right)^{2}.
\frac{289x^{2}-34x+1}{169}=\left(x-1\right)\times 2x
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
\frac{289x^{2}-34x+1}{169}=\left(2x-2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
\frac{289x^{2}-34x+1}{169}=2x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te x.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=2x^{2}-2x
Whakawehea ia wā o 289x^{2}-34x+1 ki te 169, kia riro ko \frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}-2x^{2}=-2x
Tangohia te 2x^{2} mai i ngā taha e rua.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=-2x
Pahekotia te \frac{289}{169}x^{2} me -2x^{2}, ka -\frac{49}{169}x^{2}.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
-\frac{49}{169}x^{2}+\frac{304}{169}x+\frac{1}{169}=0
Pahekotia te -\frac{34}{169}x me 2x, ka \frac{304}{169}x.
x=\frac{-\frac{304}{169}±\sqrt{\left(\frac{304}{169}\right)^{2}-4\left(-\frac{49}{169}\right)\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -\frac{49}{169} mō a, \frac{304}{169} mō b, me \frac{1}{169} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416}{28561}-4\left(-\frac{49}{169}\right)\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
Pūruatia \frac{304}{169} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416}{28561}+\frac{196}{169}\times \frac{1}{169}}}{2\left(-\frac{49}{169}\right)}
Whakareatia -4 ki te -\frac{49}{169}.
x=\frac{-\frac{304}{169}±\sqrt{\frac{92416+196}{28561}}}{2\left(-\frac{49}{169}\right)}
Whakareatia \frac{196}{169} ki te \frac{1}{169} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{304}{169}±\sqrt{\frac{548}{169}}}{2\left(-\frac{49}{169}\right)}
Tāpiri \frac{92416}{28561} ki te \frac{196}{28561} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{2\left(-\frac{49}{169}\right)}
Tuhia te pūtakerua o te \frac{548}{169}.
x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}}
Whakareatia 2 ki te -\frac{49}{169}.
x=\frac{\frac{2\sqrt{137}}{13}-\frac{304}{169}}{-\frac{98}{169}}
Nā, me whakaoti te whārite x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}} ina he tāpiri te ±. Tāpiri -\frac{304}{169} ki te \frac{2\sqrt{137}}{13}.
x=\frac{152-13\sqrt{137}}{49}
Whakawehe -\frac{304}{169}+\frac{2\sqrt{137}}{13} ki te -\frac{98}{169} mā te whakarea -\frac{304}{169}+\frac{2\sqrt{137}}{13} ki te tau huripoki o -\frac{98}{169}.
x=\frac{-\frac{2\sqrt{137}}{13}-\frac{304}{169}}{-\frac{98}{169}}
Nā, me whakaoti te whārite x=\frac{-\frac{304}{169}±\frac{2\sqrt{137}}{13}}{-\frac{98}{169}} ina he tango te ±. Tango \frac{2\sqrt{137}}{13} mai i -\frac{304}{169}.
x=\frac{13\sqrt{137}+152}{49}
Whakawehe -\frac{304}{169}-\frac{2\sqrt{137}}{13} ki te -\frac{98}{169} mā te whakarea -\frac{304}{169}-\frac{2\sqrt{137}}{13} ki te tau huripoki o -\frac{98}{169}.
x=\frac{152-13\sqrt{137}}{49} x=\frac{13\sqrt{137}+152}{49}
Kua oti te whārite te whakatau.
\frac{289x^{2}-34x+1}{13^{2}}=\left(x-1\right)\times 2x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(17x-1\right)^{2}.
\frac{289x^{2}-34x+1}{169}=\left(x-1\right)\times 2x
Tātaihia te 13 mā te pū o 2, kia riro ko 169.
\frac{289x^{2}-34x+1}{169}=\left(2x-2\right)x
Whakamahia te āhuatanga tohatoha hei whakarea te x-1 ki te 2.
\frac{289x^{2}-34x+1}{169}=2x^{2}-2x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-2 ki te x.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=2x^{2}-2x
Whakawehea ia wā o 289x^{2}-34x+1 ki te 169, kia riro ko \frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}.
\frac{289}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}-2x^{2}=-2x
Tangohia te 2x^{2} mai i ngā taha e rua.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}=-2x
Pahekotia te \frac{289}{169}x^{2} me -2x^{2}, ka -\frac{49}{169}x^{2}.
-\frac{49}{169}x^{2}-\frac{34}{169}x+\frac{1}{169}+2x=0
Me tāpiri te 2x ki ngā taha e rua.
-\frac{49}{169}x^{2}+\frac{304}{169}x+\frac{1}{169}=0
Pahekotia te -\frac{34}{169}x me 2x, ka \frac{304}{169}x.
-\frac{49}{169}x^{2}+\frac{304}{169}x=-\frac{1}{169}
Tangohia te \frac{1}{169} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-\frac{49}{169}x^{2}+\frac{304}{169}x}{-\frac{49}{169}}=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Whakawehea ngā taha e rua o te whārite ki te -\frac{49}{169}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x^{2}+\frac{\frac{304}{169}}{-\frac{49}{169}}x=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Mā te whakawehe ki te -\frac{49}{169} ka wetekia te whakareanga ki te -\frac{49}{169}.
x^{2}-\frac{304}{49}x=-\frac{\frac{1}{169}}{-\frac{49}{169}}
Whakawehe \frac{304}{169} ki te -\frac{49}{169} mā te whakarea \frac{304}{169} ki te tau huripoki o -\frac{49}{169}.
x^{2}-\frac{304}{49}x=\frac{1}{49}
Whakawehe -\frac{1}{169} ki te -\frac{49}{169} mā te whakarea -\frac{1}{169} ki te tau huripoki o -\frac{49}{169}.
x^{2}-\frac{304}{49}x+\left(-\frac{152}{49}\right)^{2}=\frac{1}{49}+\left(-\frac{152}{49}\right)^{2}
Whakawehea te -\frac{304}{49}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{152}{49}. Nā, tāpiria te pūrua o te -\frac{152}{49} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{304}{49}x+\frac{23104}{2401}=\frac{1}{49}+\frac{23104}{2401}
Pūruatia -\frac{152}{49} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{304}{49}x+\frac{23104}{2401}=\frac{23153}{2401}
Tāpiri \frac{1}{49} ki te \frac{23104}{2401} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{152}{49}\right)^{2}=\frac{23153}{2401}
Tauwehea x^{2}-\frac{304}{49}x+\frac{23104}{2401}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{152}{49}\right)^{2}}=\sqrt{\frac{23153}{2401}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{152}{49}=\frac{13\sqrt{137}}{49} x-\frac{152}{49}=-\frac{13\sqrt{137}}{49}
Whakarūnātia.
x=\frac{13\sqrt{137}+152}{49} x=\frac{152-13\sqrt{137}}{49}
Me tāpiri \frac{152}{49} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}