Aromātai
\frac{4395300000000000000000000000000}{29}\approx 1.51562069 \cdot 10^{29}
Tauwehe
\frac{3 \cdot 13 \cdot 23 \cdot 2 ^ {26} \cdot 5 ^ {26} \cdot 7 ^ {2}}{29} = 1.5156206896551725 \times 10^{29}
Tohaina
Kua tāruatia ki te papatopenga
\frac{3.9\times 10^{21}\times 16100^{2}}{6.67}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{3.9\times 1000000000000000000000\times 16100^{2}}{6.67}
Tātaihia te 10 mā te pū o 21, kia riro ko 1000000000000000000000.
\frac{3900000000000000000000\times 16100^{2}}{6.67}
Whakareatia te 3.9 ki te 1000000000000000000000, ka 3900000000000000000000.
\frac{3900000000000000000000\times 259210000}{6.67}
Tātaihia te 16100 mā te pū o 2, kia riro ko 259210000.
\frac{1010919000000000000000000000000}{6.67}
Whakareatia te 3900000000000000000000 ki te 259210000, ka 1010919000000000000000000000000.
\frac{101091900000000000000000000000000}{667}
Whakarohaina te \frac{1010919000000000000000000000000}{6.67} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{4395300000000000000000000000000}{29}
Whakahekea te hautanga \frac{101091900000000000000000000000000}{667} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 23.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}