Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{9}\left(1-\frac{1}{4}\right)}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{9}\left(\frac{4}{4}-\frac{1}{4}\right)}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{1}{9}\times \frac{4-1}{4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{9}\times \frac{3}{4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tangohia te 1 i te 4, ka 3.
\frac{\frac{1\times 3}{9\times 4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Me whakarea te \frac{1}{9} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{3}{36}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{9\times 4}.
\frac{\frac{1}{12}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Whakahekea te hautanga \frac{3}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{1}{12}}{\frac{8}{9}+\frac{33}{9}-\frac{2}{3}}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{8}{9} me \frac{11}{3} ki te hautau me te tautūnga 9.
\frac{\frac{1}{12}}{\frac{8+33}{9}-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{8}{9} me \frac{33}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{12}}{\frac{41}{9}-\frac{2}{3}}
Tāpirihia te 8 ki te 33, ka 41.
\frac{\frac{1}{12}}{\frac{41}{9}-\frac{6}{9}}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{41}{9} me \frac{2}{3} ki te hautau me te tautūnga 9.
\frac{\frac{1}{12}}{\frac{41-6}{9}}
Tā te mea he rite te tauraro o \frac{41}{9} me \frac{6}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{12}}{\frac{35}{9}}
Tangohia te 6 i te 41, ka 35.
\frac{1}{12}\times \frac{9}{35}
Whakawehe \frac{1}{12} ki te \frac{35}{9} mā te whakarea \frac{1}{12} ki te tau huripoki o \frac{35}{9}.
\frac{1\times 9}{12\times 35}
Me whakarea te \frac{1}{12} ki te \frac{9}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{420}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 9}{12\times 35}.
\frac{3}{140}
Whakahekea te hautanga \frac{9}{420} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.