Aromātai
\frac{3}{140}\approx 0.021428571
Tauwehe
\frac{3}{2 ^ {2} \cdot 5 \cdot 7} = 0.02142857142857143
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{9}\left(1-\frac{1}{4}\right)}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tātaihia te \frac{1}{3} mā te pū o 2, kia riro ko \frac{1}{9}.
\frac{\frac{1}{9}\left(\frac{4}{4}-\frac{1}{4}\right)}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Me tahuri te 1 ki te hautau \frac{4}{4}.
\frac{\frac{1}{9}\times \frac{4-1}{4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{4}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{9}\times \frac{3}{4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Tangohia te 1 i te 4, ka 3.
\frac{\frac{1\times 3}{9\times 4}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Me whakarea te \frac{1}{9} ki te \frac{3}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{3}{36}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 3}{9\times 4}.
\frac{\frac{1}{12}}{\frac{8}{9}+\frac{11}{3}-\frac{2}{3}}
Whakahekea te hautanga \frac{3}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{\frac{1}{12}}{\frac{8}{9}+\frac{33}{9}-\frac{2}{3}}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{8}{9} me \frac{11}{3} ki te hautau me te tautūnga 9.
\frac{\frac{1}{12}}{\frac{8+33}{9}-\frac{2}{3}}
Tā te mea he rite te tauraro o \frac{8}{9} me \frac{33}{9}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{1}{12}}{\frac{41}{9}-\frac{2}{3}}
Tāpirihia te 8 ki te 33, ka 41.
\frac{\frac{1}{12}}{\frac{41}{9}-\frac{6}{9}}
Ko te maha noa iti rawa atu o 9 me 3 ko 9. Me tahuri \frac{41}{9} me \frac{2}{3} ki te hautau me te tautūnga 9.
\frac{\frac{1}{12}}{\frac{41-6}{9}}
Tā te mea he rite te tauraro o \frac{41}{9} me \frac{6}{9}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{1}{12}}{\frac{35}{9}}
Tangohia te 6 i te 41, ka 35.
\frac{1}{12}\times \frac{9}{35}
Whakawehe \frac{1}{12} ki te \frac{35}{9} mā te whakarea \frac{1}{12} ki te tau huripoki o \frac{35}{9}.
\frac{1\times 9}{12\times 35}
Me whakarea te \frac{1}{12} ki te \frac{9}{35} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{420}
Mahia ngā whakarea i roto i te hautanga \frac{1\times 9}{12\times 35}.
\frac{3}{140}
Whakahekea te hautanga \frac{9}{420} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}