Aromātai
2
Wāhi Tūturu
2
Tohaina
Kua tāruatia ki te papatopenga
\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Tātaihia te 1+i mā te pū o 4, kia riro ko -4.
\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Tātaihia te 1-i mā te pū o 3, kia riro ko -2-2i.
\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Me whakarea te taurunga me te tauraro o \frac{-4}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Mahia ngā whakarea i roto o \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Whakawehea te 8-8i ki te 8, kia riro ko 1-i.
1-i+\frac{-4}{\left(1+i\right)^{3}}
Tātaihia te 1-i mā te pū o 4, kia riro ko -4.
1-i+\frac{-4}{-2+2i}
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}
Me whakarea te taurunga me te tauraro o \frac{-4}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
1-i+\frac{8+8i}{8}
Mahia ngā whakarea i roto o \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
1-i+\left(1+i\right)
Whakawehea te 8+8i ki te 8, kia riro ko 1+i.
2
Tāpirihia te 1-i ki te 1+i, ka 2.
Re(\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Tātaihia te 1+i mā te pū o 4, kia riro ko -4.
Re(\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Tātaihia te 1-i mā te pū o 3, kia riro ko -2-2i.
Re(\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Me whakarea te taurunga me te tauraro o \frac{-4}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
Re(\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Mahia ngā whakarea i roto o \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
Re(1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Whakawehea te 8-8i ki te 8, kia riro ko 1-i.
Re(1-i+\frac{-4}{\left(1+i\right)^{3}})
Tātaihia te 1-i mā te pū o 4, kia riro ko -4.
Re(1-i+\frac{-4}{-2+2i})
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
Re(1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{-4}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
Re(1-i+\frac{8+8i}{8})
Mahia ngā whakarea i roto o \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
Re(1-i+\left(1+i\right))
Whakawehea te 8+8i ki te 8, kia riro ko 1+i.
Re(2)
Tāpirihia te 1-i ki te 1+i, ka 2.
2
Ko te wāhi tūturu o 2 ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}