Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Wāhi Tūturu
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Tātaihia te 1+i mā te pū o 4, kia riro ko -4.
\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Tātaihia te 1-i mā te pū o 3, kia riro ko -2-2i.
\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Me whakarea te taurunga me te tauraro o \frac{-4}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Mahia ngā whakarea i roto o \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}}
Whakawehea te 8-8i ki te 8, kia riro ko 1-i.
1-i+\frac{-4}{\left(1+i\right)^{3}}
Tātaihia te 1-i mā te pū o 4, kia riro ko -4.
1-i+\frac{-4}{-2+2i}
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}
Me whakarea te taurunga me te tauraro o \frac{-4}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
1-i+\frac{8+8i}{8}
Mahia ngā whakarea i roto o \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
1-i+\left(1+i\right)
Whakawehea te 8+8i ki te 8, kia riro ko 1+i.
2
Tāpirihia te 1-i ki te 1+i, ka 2.
Re(\frac{-4}{\left(1-i\right)^{3}}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Tātaihia te 1+i mā te pū o 4, kia riro ko -4.
Re(\frac{-4}{-2-2i}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Tātaihia te 1-i mā te pū o 3, kia riro ko -2-2i.
Re(\frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Me whakarea te taurunga me te tauraro o \frac{-4}{-2-2i} ki te haumi hiato o te tauraro, -2+2i.
Re(\frac{8-8i}{8}+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Mahia ngā whakarea i roto o \frac{-4\left(-2+2i\right)}{\left(-2-2i\right)\left(-2+2i\right)}.
Re(1-i+\frac{\left(1-i\right)^{4}}{\left(1+i\right)^{3}})
Whakawehea te 8-8i ki te 8, kia riro ko 1-i.
Re(1-i+\frac{-4}{\left(1+i\right)^{3}})
Tātaihia te 1-i mā te pū o 4, kia riro ko -4.
Re(1-i+\frac{-4}{-2+2i})
Tātaihia te 1+i mā te pū o 3, kia riro ko -2+2i.
Re(1-i+\frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)})
Me whakarea te taurunga me te tauraro o \frac{-4}{-2+2i} ki te haumi hiato o te tauraro, -2-2i.
Re(1-i+\frac{8+8i}{8})
Mahia ngā whakarea i roto o \frac{-4\left(-2-2i\right)}{\left(-2+2i\right)\left(-2-2i\right)}.
Re(1-i+\left(1+i\right))
Whakawehea te 8+8i ki te 8, kia riro ko 1+i.
Re(2)
Tāpirihia te 1-i ki te 1+i, ka 2.
2
Ko te wāhi tūturu o 2 ko 2.