Aromātai
-\frac{yx^{6}}{2}
Whakaroha
-\frac{yx^{6}}{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\left(-x^{2}\right)\times 1\right)^{3}}{-2x\left(\left(-x\right)y\right)^{-1}}
Tātaihia te y mā te pū o 0, kia riro ko 1.
\frac{\left(-x^{2}\right)^{3}\times 1^{3}}{-2x\left(\left(-x\right)y\right)^{-1}}
Whakarohaina te \left(\left(-x^{2}\right)\times 1\right)^{3}.
\frac{\left(-x^{2}\right)^{3}\times 1}{-2x\left(\left(-x\right)y\right)^{-1}}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
\frac{\left(-x^{2}\right)^{3}\times 1}{-2x\left(-x\right)^{-1}y^{-1}}
Whakarohaina te \left(\left(-x\right)y\right)^{-1}.
\frac{\left(-x^{2}\right)^{3}}{-2x\left(-x\right)^{-1}y^{-1}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\left(-1\right)^{3}\left(x^{2}\right)^{3}}{-2x\left(-x\right)^{-1}y^{-1}}
Whakarohaina te \left(-x^{2}\right)^{3}.
\frac{\left(-1\right)^{3}x^{6}}{-2x\left(-x\right)^{-1}y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{-x^{6}}{-2x\left(-x\right)^{-1}y^{-1}}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-x^{6}}{-2x\left(-1\right)^{-1}x^{-1}y^{-1}}
Whakarohaina te \left(-x\right)^{-1}.
\frac{-x^{6}}{-2x\left(-1\right)x^{-1}y^{-1}}
Tātaihia te -1 mā te pū o -1, kia riro ko -1.
\frac{-x^{6}}{2xx^{-1}y^{-1}}
Whakareatia te -2 ki te -1, ka 2.
\frac{-x^{6}}{2y^{-1}}
Whakareatia te x ki te x^{-1}, ka 1.
\frac{x^{6}}{-2y^{-1}}
Me whakakore tahi te -1 i te taurunga me te tauraro.
\frac{\left(\left(-x^{2}\right)\times 1\right)^{3}}{-2x\left(\left(-x\right)y\right)^{-1}}
Tātaihia te y mā te pū o 0, kia riro ko 1.
\frac{\left(-x^{2}\right)^{3}\times 1^{3}}{-2x\left(\left(-x\right)y\right)^{-1}}
Whakarohaina te \left(\left(-x^{2}\right)\times 1\right)^{3}.
\frac{\left(-x^{2}\right)^{3}\times 1}{-2x\left(\left(-x\right)y\right)^{-1}}
Tātaihia te 1 mā te pū o 3, kia riro ko 1.
\frac{\left(-x^{2}\right)^{3}\times 1}{-2x\left(-x\right)^{-1}y^{-1}}
Whakarohaina te \left(\left(-x\right)y\right)^{-1}.
\frac{\left(-x^{2}\right)^{3}}{-2x\left(-x\right)^{-1}y^{-1}}
Me whakakore tahi te 1 i te taurunga me te tauraro.
\frac{\left(-1\right)^{3}\left(x^{2}\right)^{3}}{-2x\left(-x\right)^{-1}y^{-1}}
Whakarohaina te \left(-x^{2}\right)^{3}.
\frac{\left(-1\right)^{3}x^{6}}{-2x\left(-x\right)^{-1}y^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{-x^{6}}{-2x\left(-x\right)^{-1}y^{-1}}
Tātaihia te -1 mā te pū o 3, kia riro ko -1.
\frac{-x^{6}}{-2x\left(-1\right)^{-1}x^{-1}y^{-1}}
Whakarohaina te \left(-x\right)^{-1}.
\frac{-x^{6}}{-2x\left(-1\right)x^{-1}y^{-1}}
Tātaihia te -1 mā te pū o -1, kia riro ko -1.
\frac{-x^{6}}{2xx^{-1}y^{-1}}
Whakareatia te -2 ki te -1, ka 2.
\frac{-x^{6}}{2y^{-1}}
Whakareatia te x ki te x^{-1}, ka 1.
\frac{x^{6}}{-2y^{-1}}
Me whakakore tahi te -1 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}