Aromātai
y^{2}x^{11}
Whakaroha
y^{2}x^{11}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{y}x^{2}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\left(\frac{x^{2}}{y}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{1}{y}x^{2} hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Kia whakarewa i te \frac{x^{2}}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2\right)^{2}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Whakarohaina te \left(-2xy\right)^{2}.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4x^{2}y^{2}}{4\left(xy\right)^{-3}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{\frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4 hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2} hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}y^{2}}{y^{3}}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2} hei hautanga kotahi.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4\left(xy\right)^{-3}}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}}
Whakarohaina te \left(xy\right)^{-3}.
\frac{4x^{2}\left(x^{2}\right)^{3}}{y\times 4x^{-3}y^{-3}}
Tuhia te \frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}} hei hautanga kotahi.
\frac{x^{2}\left(x^{2}\right)^{3}}{x^{-3}y^{-3}y}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{x^{5}\left(x^{2}\right)^{3}}{y^{-3}y}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{x^{5}x^{6}}{y^{-3}y}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{x^{11}}{y^{-3}y}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 6 kia riro ai te 11.
\frac{x^{11}}{y^{-2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -3 me te 1 kia riro ai te -2.
\frac{\left(\frac{1}{y}x^{2}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\left(\frac{x^{2}}{y}\right)^{3}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{1}{y}x^{2} hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2xy\right)^{2}}{4\left(xy\right)^{-3}}
Kia whakarewa i te \frac{x^{2}}{y} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\left(-2\right)^{2}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Whakarohaina te \left(-2xy\right)^{2}.
\frac{\frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4x^{2}y^{2}}{4\left(xy\right)^{-3}}
Tātaihia te -2 mā te pū o 2, kia riro ko 4.
\frac{\frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2}y^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}}{y^{3}}\times 4 hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}\times 4}{y^{3}}x^{2} hei hautanga kotahi.
\frac{\frac{\left(x^{2}\right)^{3}\times 4x^{2}y^{2}}{y^{3}}}{4\left(xy\right)^{-3}}
Tuhia te \frac{\left(x^{2}\right)^{3}\times 4x^{2}}{y^{3}}y^{2} hei hautanga kotahi.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4\left(xy\right)^{-3}}
Me whakakore tahi te y^{2} i te taurunga me te tauraro.
\frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}}
Whakarohaina te \left(xy\right)^{-3}.
\frac{4x^{2}\left(x^{2}\right)^{3}}{y\times 4x^{-3}y^{-3}}
Tuhia te \frac{\frac{4x^{2}\left(x^{2}\right)^{3}}{y}}{4x^{-3}y^{-3}} hei hautanga kotahi.
\frac{x^{2}\left(x^{2}\right)^{3}}{x^{-3}y^{-3}y}
Me whakakore tahi te 4 i te taurunga me te tauraro.
\frac{x^{5}\left(x^{2}\right)^{3}}{y^{-3}y}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{x^{5}x^{6}}{y^{-3}y}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 3 kia riro ai te 6.
\frac{x^{11}}{y^{-3}y}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 6 kia riro ai te 11.
\frac{x^{11}}{y^{-2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -3 me te 1 kia riro ai te -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}