Aromātai
\frac{5}{3}\approx 1.666666667
Tauwehe
\frac{5}{3} = 1\frac{2}{3} = 1.6666666666666667
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { ( - 104 ) } { 156 } \div \frac { ( - 72 ) } { 180 } = ?
Tohaina
Kua tāruatia ki te papatopenga
\frac{-104\times 180}{156\left(-72\right)}
Whakawehe \frac{-104}{156} ki te \frac{-72}{180} mā te whakarea \frac{-104}{156} ki te tau huripoki o \frac{-72}{180}.
\frac{-5}{-3}
Me whakakore tahi te 2\times 3\times 12\times 52 i te taurunga me te tauraro.
\frac{5}{3}
Ka taea te hautanga \frac{-5}{-3} te whakamāmā ki te \frac{5}{3} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}