Aromātai
\frac{25299}{6440}\approx 3.928416149
Tauwehe
\frac{3 ^ {3} \cdot 937}{2 ^ {3} \cdot 5 \cdot 7 \cdot 23} = 3\frac{5979}{6440} = 3.928416149068323
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{-7\left(-45\right)}{18}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tuhia te -\frac{7}{18}\left(-45\right) hei hautanga kotahi.
\frac{\frac{315}{18}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakareatia te -7 ki te -45, ka 315.
\frac{\frac{35}{2}+\frac{1}{6}\left(-1\right)^{2000}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakahekea te hautanga \frac{315}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{\frac{35}{2}+\frac{1}{6}\times 1}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tātaihia te -1 mā te pū o 2000, kia riro ko 1.
\frac{\frac{35}{2}+\frac{1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakareatia te \frac{1}{6} ki te 1, ka \frac{1}{6}.
\frac{\frac{105}{6}+\frac{1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{35}{2} me \frac{1}{6} ki te hautau me te tautūnga 6.
\frac{\frac{105+1}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tā te mea he rite te tauraro o \frac{105}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{106}{6}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tāpirihia te 105 ki te 1, ka 106.
\frac{\frac{53}{3}}{\left(-\frac{13\times 3+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakahekea te hautanga \frac{106}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{53}{3}}{\left(-\frac{39+1}{3}\right)\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakareatia te 13 ki te 3, ka 39.
\frac{\frac{53}{3}}{-\frac{40}{3}\left(-1\right)^{1009}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tāpirihia te 39 ki te 1, ka 40.
\frac{\frac{53}{3}}{-\frac{40}{3}\left(-1\right)-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tātaihia te -1 mā te pū o 1009, kia riro ko -1.
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{3\times 4+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakareatia te -\frac{40}{3} ki te -1, ka \frac{40}{3}.
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{12+3}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Whakareatia te 3 ki te 4, ka 12.
\frac{\frac{53}{3}}{\frac{40}{3}-\left(-\frac{15}{4}\right)-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tāpirihia te 12 ki te 3, ka 15.
\frac{\frac{53}{3}}{\frac{40}{3}+\frac{15}{4}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Ko te tauaro o -\frac{15}{4} ko \frac{15}{4}.
\frac{\frac{53}{3}}{\frac{160}{12}+\frac{45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Ko te maha noa iti rawa atu o 3 me 4 ko 12. Me tahuri \frac{40}{3} me \frac{15}{4} ki te hautau me te tautūnga 12.
\frac{\frac{53}{3}}{\frac{160+45}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tā te mea he rite te tauraro o \frac{160}{12} me \frac{45}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{53}{3}}{\frac{205}{12}-\frac{5}{16}}+\frac{2\times 8+7}{8}
Tāpirihia te 160 ki te 45, ka 205.
\frac{\frac{53}{3}}{\frac{820}{48}-\frac{15}{48}}+\frac{2\times 8+7}{8}
Ko te maha noa iti rawa atu o 12 me 16 ko 48. Me tahuri \frac{205}{12} me \frac{5}{16} ki te hautau me te tautūnga 48.
\frac{\frac{53}{3}}{\frac{820-15}{48}}+\frac{2\times 8+7}{8}
Tā te mea he rite te tauraro o \frac{820}{48} me \frac{15}{48}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{53}{3}}{\frac{805}{48}}+\frac{2\times 8+7}{8}
Tangohia te 15 i te 820, ka 805.
\frac{53}{3}\times \frac{48}{805}+\frac{2\times 8+7}{8}
Whakawehe \frac{53}{3} ki te \frac{805}{48} mā te whakarea \frac{53}{3} ki te tau huripoki o \frac{805}{48}.
\frac{53\times 48}{3\times 805}+\frac{2\times 8+7}{8}
Me whakarea te \frac{53}{3} ki te \frac{48}{805} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{2544}{2415}+\frac{2\times 8+7}{8}
Mahia ngā whakarea i roto i te hautanga \frac{53\times 48}{3\times 805}.
\frac{848}{805}+\frac{2\times 8+7}{8}
Whakahekea te hautanga \frac{2544}{2415} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{848}{805}+\frac{16+7}{8}
Whakareatia te 2 ki te 8, ka 16.
\frac{848}{805}+\frac{23}{8}
Tāpirihia te 16 ki te 7, ka 23.
\frac{6784}{6440}+\frac{18515}{6440}
Ko te maha noa iti rawa atu o 805 me 8 ko 6440. Me tahuri \frac{848}{805} me \frac{23}{8} ki te hautau me te tautūnga 6440.
\frac{6784+18515}{6440}
Tā te mea he rite te tauraro o \frac{6784}{6440} me \frac{18515}{6440}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{25299}{6440}
Tāpirihia te 6784 ki te 18515, ka 25299.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}