Manatoko
pono
Tohaina
Kua tāruatia ki te papatopenga
2\left(-\frac{7}{10}\right)-35=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 10,4,5.
\frac{2\left(-7\right)}{10}-35=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Tuhia te 2\left(-\frac{7}{10}\right) hei hautanga kotahi.
\frac{-14}{10}-35=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Whakareatia te 2 ki te -7, ka -14.
-\frac{7}{5}-35=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Whakahekea te hautanga \frac{-14}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{7}{5}-\frac{175}{5}=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Me tahuri te 35 ki te hautau \frac{175}{5}.
\frac{-7-175}{5}=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Tā te mea he rite te tauraro o -\frac{7}{5} me \frac{175}{5}, me tango rāua mā te tango i ō raua taurunga.
-\frac{182}{5}=60\left(-\frac{7}{10}\right)-4\times 2\left(-\frac{7}{10}\right)
Tangohia te 175 i te -7, ka -182.
-\frac{182}{5}=\frac{60\left(-7\right)}{10}-4\times 2\left(-\frac{7}{10}\right)
Tuhia te 60\left(-\frac{7}{10}\right) hei hautanga kotahi.
-\frac{182}{5}=\frac{-420}{10}-4\times 2\left(-\frac{7}{10}\right)
Whakareatia te 60 ki te -7, ka -420.
-\frac{182}{5}=-42-4\times 2\left(-\frac{7}{10}\right)
Whakawehea te -420 ki te 10, kia riro ko -42.
-\frac{182}{5}=-42-8\left(-\frac{7}{10}\right)
Whakareatia te -4 ki te 2, ka -8.
-\frac{182}{5}=-42+\frac{-8\left(-7\right)}{10}
Tuhia te -8\left(-\frac{7}{10}\right) hei hautanga kotahi.
-\frac{182}{5}=-42+\frac{56}{10}
Whakareatia te -8 ki te -7, ka 56.
-\frac{182}{5}=-42+\frac{28}{5}
Whakahekea te hautanga \frac{56}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-\frac{182}{5}=-\frac{210}{5}+\frac{28}{5}
Me tahuri te -42 ki te hautau -\frac{210}{5}.
-\frac{182}{5}=\frac{-210+28}{5}
Tā te mea he rite te tauraro o -\frac{210}{5} me \frac{28}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{182}{5}=-\frac{182}{5}
Tāpirihia te -210 ki te 28, ka -182.
\text{true}
Whakatauritea te -\frac{182}{5} me te -\frac{182}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}