Aromātai
24
Tauwehe
2^{3}\times 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{-8}{\left(-1\right)^{-4}}-\frac{\left(-\frac{1}{2}\right)^{-5}}{\left(-\frac{1}{-1}\right)^{-6}}
Tātaihia te -\frac{1}{2} mā te pū o -3, kia riro ko -8.
\frac{-8}{1}-\frac{\left(-\frac{1}{2}\right)^{-5}}{\left(-\frac{1}{-1}\right)^{-6}}
Tātaihia te -1 mā te pū o -4, kia riro ko 1.
-8-\frac{\left(-\frac{1}{2}\right)^{-5}}{\left(-\frac{1}{-1}\right)^{-6}}
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-8-\frac{-32}{\left(-\frac{1}{-1}\right)^{-6}}
Tātaihia te -\frac{1}{2} mā te pū o -5, kia riro ko -32.
-8-\frac{-32}{\left(-\left(-1\right)\right)^{-6}}
Whakawehea te 1 ki te -1, kia riro ko -1.
-8-\frac{-32}{1^{-6}}
Ko te tauaro o -1 ko 1.
-8-\frac{-32}{1}
Tātaihia te 1 mā te pū o -6, kia riro ko 1.
-8-\left(-32\right)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
-8+32
Ko te tauaro o -32 ko 32.
24
Tāpirihia te -8 ki te 32, ka 24.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}