Aromātai
315
Tauwehe
3^{2}\times 5\times 7
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{6}\right)^{-1}+3\times \left(2\sqrt{9}\right)^{3}-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaitia te \sqrt[3]{\frac{1}{216}} kia tae ki \frac{1}{6}.
\frac{6+3\times \left(2\sqrt{9}\right)^{3}-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaihia te \frac{1}{6} mā te pū o -1, kia riro ko 6.
\frac{6+3\times \left(2\times 3\right)^{3}-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaitia te pūtakerua o 9 kia tae ki 3.
\frac{6+3\times 6^{3}-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Whakareatia te 2 ki te 3, ka 6.
\frac{6+3\times 216-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaihia te 6 mā te pū o 3, kia riro ko 216.
\frac{6+648-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Whakareatia te 3 ki te 216, ka 648.
\frac{654-3\sqrt{64}}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tāpirihia te 6 ki te 648, ka 654.
\frac{654-3\times 8}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
\frac{654-24}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Whakareatia te -3 ki te 8, ka -24.
\frac{630}{\left(-2\right)^{0}-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tangohia te 24 i te 654, ka 630.
\frac{630}{1-\left(-\frac{1}{2}\right)+\sqrt[4]{\frac{1}{16}}}
Tātaihia te -2 mā te pū o 0, kia riro ko 1.
\frac{630}{1+\frac{1}{2}+\sqrt[4]{\frac{1}{16}}}
Ko te tauaro o -\frac{1}{2} ko \frac{1}{2}.
\frac{630}{\frac{3}{2}+\sqrt[4]{\frac{1}{16}}}
Tāpirihia te 1 ki te \frac{1}{2}, ka \frac{3}{2}.
\frac{630}{\frac{3}{2}+\frac{1}{2}}
Tātaitia te \sqrt[4]{\frac{1}{16}} kia tae ki \frac{1}{2}.
\frac{630}{2}
Tāpirihia te \frac{3}{2} ki te \frac{1}{2}, ka 2.
315
Whakawehea te 630 ki te 2, kia riro ko 315.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}