Aromātai
\frac{n+2}{n-2}
Whakaroha
\frac{n+2}{n-2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Kia whakarewa i te \frac{n+2}{n-2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Whakawehe \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} mā te whakarea \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te tau huripoki o \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Me whakakore tahi te \left(n-2\right)^{2}\left(n+2\right)^{2} i te taurunga me te tauraro.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Me whakarea te \frac{3\left(n+2\right)}{n\left(n-2\right)} ki te \frac{n}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+2}{n-2}
Me whakakore tahi te 3n i te taurunga me te tauraro.
\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Kia whakarewa i te \frac{n+2}{n-2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Whakawehe \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} mā te whakarea \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te tau huripoki o \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Me whakakore tahi te \left(n-2\right)^{2}\left(n+2\right)^{2} i te taurunga me te tauraro.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Me whakarea te \frac{3\left(n+2\right)}{n\left(n-2\right)} ki te \frac{n}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+2}{n-2}
Me whakakore tahi te 3n i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}