Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Kia whakarewa i te \frac{n+2}{n-2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Whakawehe \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} mā te whakarea \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te tau huripoki o \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Me whakakore tahi te \left(n-2\right)^{2}\left(n+2\right)^{2} i te taurunga me te tauraro.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Me whakarea te \frac{3\left(n+2\right)}{n\left(n-2\right)} ki te \frac{n}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+2}{n-2}
Me whakakore tahi te 3n i te taurunga me te tauraro.
\frac{\frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}}}{\frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}}\times \frac{n}{3}
Kia whakarewa i te \frac{n+2}{n-2} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}\times \frac{n}{3}
Whakawehe \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12} mā te whakarea \frac{\left(n+2\right)^{3}}{\left(n-2\right)^{3}} ki te tau huripoki o \frac{n^{3}+4n^{2}+4n}{3n^{2}-12n+12}.
\frac{3\left(n-2\right)^{2}\left(n+2\right)^{3}}{n\left(n+2\right)^{2}\left(n-2\right)^{3}}\times \frac{n}{3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(n+2\right)^{3}\left(3n^{2}-12n+12\right)}{\left(n-2\right)^{3}\left(n^{3}+4n^{2}+4n\right)}.
\frac{3\left(n+2\right)}{n\left(n-2\right)}\times \frac{n}{3}
Me whakakore tahi te \left(n-2\right)^{2}\left(n+2\right)^{2} i te taurunga me te tauraro.
\frac{3\left(n+2\right)n}{n\left(n-2\right)\times 3}
Me whakarea te \frac{3\left(n+2\right)}{n\left(n-2\right)} ki te \frac{n}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{n+2}{n-2}
Me whakakore tahi te 3n i te taurunga me te tauraro.