Aromātai
\frac{565}{3}\approx 188.333333333
Tauwehe
\frac{5 \cdot 113}{3} = 188\frac{1}{3} = 188.33333333333334
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{9}{12}-\frac{4}{12}\right)\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Ko te maha noa iti rawa atu o 4 me 3 ko 12. Me tahuri \frac{3}{4} me \frac{1}{3} ki te hautau me te tautūnga 12.
\frac{\frac{9-4}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tā te mea he rite te tauraro o \frac{9}{12} me \frac{4}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{12}\times \frac{2}{3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tangohia te 4 i te 9, ka 5.
\frac{\frac{5\times 2}{12\times 3}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Me whakarea te \frac{5}{12} ki te \frac{2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{10}{36}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Mahia ngā whakarea i roto i te hautanga \frac{5\times 2}{12\times 3}.
\frac{\frac{5}{18}}{\frac{1-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Whakahekea te hautanga \frac{10}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{5}{18}}{\frac{\frac{6}{6}-\frac{1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Me tahuri te 1 ki te hautau \frac{6}{6}.
\frac{\frac{5}{18}}{\frac{\frac{6-1}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tā te mea he rite te tauraro o \frac{6}{6} me \frac{1}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{5}{18}}{\frac{\frac{5}{6}}{5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tangohia te 1 i te 6, ka 5.
\frac{\frac{5}{18}}{\frac{5}{6\times 5}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tuhia te \frac{\frac{5}{6}}{5} hei hautanga kotahi.
\frac{\frac{5}{18}}{\frac{1}{6}}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Me whakakore tahi te 5 i te taurunga me te tauraro.
\frac{5}{18}\times 6\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Whakawehe \frac{5}{18} ki te \frac{1}{6} mā te whakarea \frac{5}{18} ki te tau huripoki o \frac{1}{6}.
\frac{5\times 6}{18}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tuhia te \frac{5}{18}\times 6 hei hautanga kotahi.
\frac{30}{18}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Whakareatia te 5 ki te 6, ka 30.
\frac{5}{3}\times 3+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Whakahekea te hautanga \frac{30}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
5+\frac{\frac{\frac{4}{3}+\frac{1}{2}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Me whakakore te 3 me te 3.
5+\frac{\frac{\frac{8}{6}+\frac{3}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Ko te maha noa iti rawa atu o 3 me 2 ko 6. Me tahuri \frac{4}{3} me \frac{1}{2} ki te hautau me te tautūnga 6.
5+\frac{\frac{\frac{8+3}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tā te mea he rite te tauraro o \frac{8}{6} me \frac{3}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
5+\frac{\frac{\frac{11}{6}}{\frac{1}{2}-\frac{2}{5}}}{\frac{1}{2}-\frac{2}{5}}
Tāpirihia te 8 ki te 3, ka 11.
5+\frac{\frac{\frac{11}{6}}{\frac{5}{10}-\frac{4}{10}}}{\frac{1}{2}-\frac{2}{5}}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{2}{5} ki te hautau me te tautūnga 10.
5+\frac{\frac{\frac{11}{6}}{\frac{5-4}{10}}}{\frac{1}{2}-\frac{2}{5}}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{4}{10}, me tango rāua mā te tango i ō raua taurunga.
5+\frac{\frac{\frac{11}{6}}{\frac{1}{10}}}{\frac{1}{2}-\frac{2}{5}}
Tangohia te 4 i te 5, ka 1.
5+\frac{\frac{11}{6}\times 10}{\frac{1}{2}-\frac{2}{5}}
Whakawehe \frac{11}{6} ki te \frac{1}{10} mā te whakarea \frac{11}{6} ki te tau huripoki o \frac{1}{10}.
5+\frac{\frac{11\times 10}{6}}{\frac{1}{2}-\frac{2}{5}}
Tuhia te \frac{11}{6}\times 10 hei hautanga kotahi.
5+\frac{\frac{110}{6}}{\frac{1}{2}-\frac{2}{5}}
Whakareatia te 11 ki te 10, ka 110.
5+\frac{\frac{55}{3}}{\frac{1}{2}-\frac{2}{5}}
Whakahekea te hautanga \frac{110}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
5+\frac{\frac{55}{3}}{\frac{5}{10}-\frac{4}{10}}
Ko te maha noa iti rawa atu o 2 me 5 ko 10. Me tahuri \frac{1}{2} me \frac{2}{5} ki te hautau me te tautūnga 10.
5+\frac{\frac{55}{3}}{\frac{5-4}{10}}
Tā te mea he rite te tauraro o \frac{5}{10} me \frac{4}{10}, me tango rāua mā te tango i ō raua taurunga.
5+\frac{\frac{55}{3}}{\frac{1}{10}}
Tangohia te 4 i te 5, ka 1.
5+\frac{55}{3}\times 10
Whakawehe \frac{55}{3} ki te \frac{1}{10} mā te whakarea \frac{55}{3} ki te tau huripoki o \frac{1}{10}.
5+\frac{55\times 10}{3}
Tuhia te \frac{55}{3}\times 10 hei hautanga kotahi.
5+\frac{550}{3}
Whakareatia te 55 ki te 10, ka 550.
\frac{15}{3}+\frac{550}{3}
Me tahuri te 5 ki te hautau \frac{15}{3}.
\frac{15+550}{3}
Tā te mea he rite te tauraro o \frac{15}{3} me \frac{550}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{565}{3}
Tāpirihia te 15 ki te 550, ka 565.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}