Aromātai
-\frac{4}{165}\approx -0.024242424
Tauwehe
-\frac{4}{165} = -0.024242424242424242
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{10}{15}-\frac{12}{15}}{\frac{5}{4}+\frac{3}{2}}}{\frac{7}{2}-\frac{3}{2}}
Ko te maha noa iti rawa atu o 3 me 5 ko 15. Me tahuri \frac{2}{3} me \frac{4}{5} ki te hautau me te tautūnga 15.
\frac{\frac{\frac{10-12}{15}}{\frac{5}{4}+\frac{3}{2}}}{\frac{7}{2}-\frac{3}{2}}
Tā te mea he rite te tauraro o \frac{10}{15} me \frac{12}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{\frac{-\frac{2}{15}}{\frac{5}{4}+\frac{3}{2}}}{\frac{7}{2}-\frac{3}{2}}
Tangohia te 12 i te 10, ka -2.
\frac{\frac{-\frac{2}{15}}{\frac{5}{4}+\frac{6}{4}}}{\frac{7}{2}-\frac{3}{2}}
Ko te maha noa iti rawa atu o 4 me 2 ko 4. Me tahuri \frac{5}{4} me \frac{3}{2} ki te hautau me te tautūnga 4.
\frac{\frac{-\frac{2}{15}}{\frac{5+6}{4}}}{\frac{7}{2}-\frac{3}{2}}
Tā te mea he rite te tauraro o \frac{5}{4} me \frac{6}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\frac{-\frac{2}{15}}{\frac{11}{4}}}{\frac{7}{2}-\frac{3}{2}}
Tāpirihia te 5 ki te 6, ka 11.
\frac{-\frac{2}{15}\times \frac{4}{11}}{\frac{7}{2}-\frac{3}{2}}
Whakawehe -\frac{2}{15} ki te \frac{11}{4} mā te whakarea -\frac{2}{15} ki te tau huripoki o \frac{11}{4}.
\frac{\frac{-2\times 4}{15\times 11}}{\frac{7}{2}-\frac{3}{2}}
Me whakarea te -\frac{2}{15} ki te \frac{4}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\frac{-8}{165}}{\frac{7}{2}-\frac{3}{2}}
Mahia ngā whakarea i roto i te hautanga \frac{-2\times 4}{15\times 11}.
\frac{-\frac{8}{165}}{\frac{7}{2}-\frac{3}{2}}
Ka taea te hautanga \frac{-8}{165} te tuhi anō ko -\frac{8}{165} mā te tango i te tohu tōraro.
\frac{-\frac{8}{165}}{\frac{7-3}{2}}
Tā te mea he rite te tauraro o \frac{7}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{8}{165}}{\frac{4}{2}}
Tangohia te 3 i te 7, ka 4.
\frac{-\frac{8}{165}}{2}
Whakawehea te 4 ki te 2, kia riro ko 2.
\frac{-8}{165\times 2}
Tuhia te \frac{-\frac{8}{165}}{2} hei hautanga kotahi.
\frac{-8}{330}
Whakareatia te 165 ki te 2, ka 330.
-\frac{4}{165}
Whakahekea te hautanga \frac{-8}{330} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}