Aromātai
\frac{a^{4}}{A^{5}}
Kimi Pārōnaki e ai ki a
\frac{4a^{3}}{A^{5}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\frac{1}{a}\right)^{-4}B^{6}A^{-2}}{B^{6}A^{3}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te 1 kia riro ai te 6.
\frac{\frac{1^{-4}}{a^{-4}}B^{6}A^{-2}}{B^{6}A^{3}}
Kia whakarewa i te \frac{1}{a} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\frac{1^{-4}B^{6}}{a^{-4}}A^{-2}}{B^{6}A^{3}}
Tuhia te \frac{1^{-4}}{a^{-4}}B^{6} hei hautanga kotahi.
\frac{\frac{1^{-4}B^{6}A^{-2}}{a^{-4}}}{B^{6}A^{3}}
Tuhia te \frac{1^{-4}B^{6}}{a^{-4}}A^{-2} hei hautanga kotahi.
\frac{1^{-4}B^{6}A^{-2}}{a^{-4}B^{6}A^{3}}
Tuhia te \frac{\frac{1^{-4}B^{6}A^{-2}}{a^{-4}}}{B^{6}A^{3}} hei hautanga kotahi.
\frac{1^{-4}A^{-2}}{a^{-4}A^{3}}
Me whakakore tahi te B^{6} i te taurunga me te tauraro.
\frac{1^{-4}}{a^{-4}A^{5}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{1}{a^{-4}A^{5}}
Tātaihia te 1 mā te pū o -4, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}