Aromātai
-\frac{885622}{15625}=-56.679808
Tauwehe
-\frac{885622}{15625} = -56\frac{10622}{15625} = -56.679808
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{1}{2500}\times 36-3\times 1495+2\times 117}{75}
Tātaihia te \frac{1}{50} mā te pū o 2, kia riro ko \frac{1}{2500}.
\frac{\frac{36}{2500}-3\times 1495+2\times 117}{75}
Whakareatia te \frac{1}{2500} ki te 36, ka \frac{36}{2500}.
\frac{\frac{9}{625}-3\times 1495+2\times 117}{75}
Whakahekea te hautanga \frac{36}{2500} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{\frac{9}{625}-4485+2\times 117}{75}
Whakareatia te 3 ki te 1495, ka 4485.
\frac{\frac{9}{625}-\frac{2803125}{625}+2\times 117}{75}
Me tahuri te 4485 ki te hautau \frac{2803125}{625}.
\frac{\frac{9-2803125}{625}+2\times 117}{75}
Tā te mea he rite te tauraro o \frac{9}{625} me \frac{2803125}{625}, me tango rāua mā te tango i ō raua taurunga.
\frac{-\frac{2803116}{625}+2\times 117}{75}
Tangohia te 2803125 i te 9, ka -2803116.
\frac{-\frac{2803116}{625}+234}{75}
Whakareatia te 2 ki te 117, ka 234.
\frac{-\frac{2803116}{625}+\frac{146250}{625}}{75}
Me tahuri te 234 ki te hautau \frac{146250}{625}.
\frac{\frac{-2803116+146250}{625}}{75}
Tā te mea he rite te tauraro o -\frac{2803116}{625} me \frac{146250}{625}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-\frac{2656866}{625}}{75}
Tāpirihia te -2803116 ki te 146250, ka -2656866.
\frac{-2656866}{625\times 75}
Tuhia te \frac{-\frac{2656866}{625}}{75} hei hautanga kotahi.
\frac{-2656866}{46875}
Whakareatia te 625 ki te 75, ka 46875.
-\frac{885622}{15625}
Whakahekea te hautanga \frac{-2656866}{46875} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}