Aromātai
0
Tauwehe
0
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { ( + 38 ) ^ { 3 } \sqrt { 0056 } } { ( 388 ) ^ { 7 } }
Tohaina
Kua tāruatia ki te papatopenga
\frac{54872\sqrt{0\times 0\times 56}}{388^{7}}
Tātaihia te 38 mā te pū o 3, kia riro ko 54872.
\frac{54872\sqrt{0\times 56}}{388^{7}}
Whakareatia te 0 ki te 0, ka 0.
\frac{54872\sqrt{0}}{388^{7}}
Whakareatia te 0 ki te 56, ka 0.
\frac{54872\times 0}{388^{7}}
Tātaitia te pūtakerua o 0 kia tae ki 0.
\frac{0}{388^{7}}
Whakareatia te 54872 ki te 0, ka 0.
\frac{0}{1323799092889403392}
Tātaihia te 388 mā te pū o 7, kia riro ko 1323799092889403392.
0
Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}