Aromātai
-20\sqrt{2}\approx -28.284271247
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { { \sqrt { 32 } } - 0 } { 6 }5 \sqrt[ 3 ] { - 216 }
Tohaina
Kua tāruatia ki te papatopenga
5\times \frac{4\sqrt{2}-0}{6}\sqrt[3]{-216}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
5\times \frac{4\sqrt{2}-0}{6}\left(-6\right)
Tātaitia te \sqrt[3]{-216} kia tae ki -6.
-30\times \frac{4\sqrt{2}-0}{6}
Whakareatia te 5 ki te -6, ka -30.
-5\left(4\sqrt{2}-0\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 30 me te 6.
-5\times 4\sqrt{2}
Whakareatia te -1 ki te 0, ka 0.
-20\sqrt{2}
Whakareatia te -5 ki te 4, ka -20.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}