Aromātai
\frac{241}{40}=6.025
Tauwehe
\frac{241}{2 ^ {3} \cdot 5} = 6\frac{1}{40} = 6.025
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{\frac{1}{2}}{\left(\frac{2}{3}\right)^{-1}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tātaitia te \sqrt[5]{\frac{1}{32}} kia tae ki \frac{1}{2}.
\frac{\frac{\frac{1}{2}}{\frac{3}{2}}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tātaihia te \frac{2}{3} mā te pū o -1, kia riro ko \frac{3}{2}.
\frac{\frac{1}{2}\times \frac{2}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakawehe \frac{1}{2} ki te \frac{3}{2} mā te whakarea \frac{1}{2} ki te tau huripoki o \frac{3}{2}.
\frac{\frac{1}{3}}{\left(1-\frac{1}{3}\right)\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakareatia te \frac{1}{2} ki te \frac{2}{3}, ka \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{2}{4}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tangohia te \frac{1}{3} i te 1, ka \frac{2}{3}.
\frac{\frac{1}{3}}{\frac{2}{3}\times \frac{1}{2}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{2}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakareatia te \frac{2}{3} ki te \frac{1}{2}, ka \frac{1}{3}.
\frac{\frac{1}{3}}{\frac{5}{6}}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tāpirihia te \frac{1}{3} ki te \frac{1}{2}, ka \frac{5}{6}.
\frac{1}{3}\times \frac{6}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakawehe \frac{1}{3} ki te \frac{5}{6} mā te whakarea \frac{1}{3} ki te tau huripoki o \frac{5}{6}.
\frac{2}{5}+\frac{\sqrt{1-\frac{16}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Whakareatia te \frac{1}{3} ki te \frac{6}{5}, ka \frac{2}{5}.
\frac{2}{5}+\frac{\sqrt{\frac{9}{25}}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tangohia te \frac{16}{25} i te 1, ka \frac{9}{25}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\left(\frac{15}{2}\right)^{1}}}
Tuhia anō te pūtake rua o te whakawehenga \frac{9}{25} hei whakawehenga o ngā pūtake rua \frac{\sqrt{9}}{\sqrt{25}}. Tuhia te pūtakerua o te taurunga me te tauraro.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{\frac{4}{5}}{\frac{15}{2}}}
Tātaihia te \frac{15}{2} mā te pū o 1, kia riro ko \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{4}{5}\times \frac{2}{15}}
Whakawehe \frac{4}{5} ki te \frac{15}{2} mā te whakarea \frac{4}{5} ki te tau huripoki o \frac{15}{2}.
\frac{2}{5}+\frac{\frac{3}{5}}{\frac{8}{75}}
Whakareatia te \frac{4}{5} ki te \frac{2}{15}, ka \frac{8}{75}.
\frac{2}{5}+\frac{3}{5}\times \frac{75}{8}
Whakawehe \frac{3}{5} ki te \frac{8}{75} mā te whakarea \frac{3}{5} ki te tau huripoki o \frac{8}{75}.
\frac{2}{5}+\frac{45}{8}
Whakareatia te \frac{3}{5} ki te \frac{75}{8}, ka \frac{45}{8}.
\frac{241}{40}
Tāpirihia te \frac{2}{5} ki te \frac{45}{8}, ka \frac{241}{40}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}