Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{6}+3\sqrt{3}}{\sqrt{2}}
Tauwehea te 96=4^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 6} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{6}. Tuhia te pūtakerua o te 4^{2}.
\frac{\left(4\sqrt{6}+3\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{6}+3\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(4\sqrt{6}+3\sqrt{3}\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4\sqrt{6}\sqrt{2}+3\sqrt{3}\sqrt{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4\sqrt{6}+3\sqrt{3} ki te \sqrt{2}.
\frac{4\sqrt{2}\sqrt{3}\sqrt{2}+3\sqrt{3}\sqrt{2}}{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{4\times 2\sqrt{3}+3\sqrt{3}\sqrt{2}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{8\sqrt{3}+3\sqrt{3}\sqrt{2}}{2}
Whakareatia te 4 ki te 2, ka 8.
\frac{8\sqrt{3}+3\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.