Aromātai
\frac{\sqrt{3}\left(3\sqrt{2}+8\right)}{2}\approx 10.602437844
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { \sqrt { 96 } + 3 \sqrt { 3 } } { \sqrt { 2 } } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\sqrt{6}+3\sqrt{3}}{\sqrt{2}}
Tauwehea te 96=4^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 6} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{6}. Tuhia te pūtakerua o te 4^{2}.
\frac{\left(4\sqrt{6}+3\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{4\sqrt{6}+3\sqrt{3}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\left(4\sqrt{6}+3\sqrt{3}\right)\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4\sqrt{6}\sqrt{2}+3\sqrt{3}\sqrt{2}}{2}
Whakamahia te āhuatanga tohatoha hei whakarea te 4\sqrt{6}+3\sqrt{3} ki te \sqrt{2}.
\frac{4\sqrt{2}\sqrt{3}\sqrt{2}+3\sqrt{3}\sqrt{2}}{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{4\times 2\sqrt{3}+3\sqrt{3}\sqrt{2}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{8\sqrt{3}+3\sqrt{3}\sqrt{2}}{2}
Whakareatia te 4 ki te 2, ka 8.
\frac{8\sqrt{3}+3\sqrt{6}}{2}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}