Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{5}+\sqrt{45}}{\sqrt{125}+\sqrt{20}}
Tauwehea te 80=4^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 5} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{5}. Tuhia te pūtakerua o te 4^{2}.
\frac{4\sqrt{5}+3\sqrt{5}}{\sqrt{125}+\sqrt{20}}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{7\sqrt{5}}{\sqrt{125}+\sqrt{20}}
Pahekotia te 4\sqrt{5} me 3\sqrt{5}, ka 7\sqrt{5}.
\frac{7\sqrt{5}}{5\sqrt{5}+\sqrt{20}}
Tauwehea te 125=5^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 5} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{5}. Tuhia te pūtakerua o te 5^{2}.
\frac{7\sqrt{5}}{5\sqrt{5}+2\sqrt{5}}
Tauwehea te 20=2^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 5} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{5}. Tuhia te pūtakerua o te 2^{2}.
\frac{7\sqrt{5}}{7\sqrt{5}}
Pahekotia te 5\sqrt{5} me 2\sqrt{5}, ka 7\sqrt{5}.
1
Me whakakore tahi te 7\sqrt{5} i te taurunga me te tauraro.