Tīpoka ki ngā ihirangi matua
Whakaoti mō q
Tick mark Image
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

q\left(\sqrt{8}+2\right)=p
Tē taea kia ōrite te tāupe q ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te q.
q\left(2\sqrt{2}+2\right)=p
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
2q\sqrt{2}+2q=p
Whakamahia te āhuatanga tohatoha hei whakarea te q ki te 2\sqrt{2}+2.
\left(2\sqrt{2}+2\right)q=p
Pahekotia ngā kīanga tau katoa e whai ana i te q.
\frac{\left(2\sqrt{2}+2\right)q}{2\sqrt{2}+2}=\frac{p}{2\sqrt{2}+2}
Whakawehea ngā taha e rua ki te 2\sqrt{2}+2.
q=\frac{p}{2\sqrt{2}+2}
Mā te whakawehe ki te 2\sqrt{2}+2 ka wetekia te whakareanga ki te 2\sqrt{2}+2.
q=\frac{\sqrt{2}p-p}{2}
Whakawehe p ki te 2\sqrt{2}+2.
q=\frac{\sqrt{2}p-p}{2}\text{, }q\neq 0
Tē taea kia ōrite te tāupe q ki 0.