Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\sqrt{3}-\sqrt{18}}{\sqrt{12}}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{3}-3\sqrt{2}}{\sqrt{12}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{5\sqrt{3}-3\sqrt{2}}{2\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{5\sqrt{3}-3\sqrt{2}}{2\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{2\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\left(5\sqrt{3}-3\sqrt{2}\right)\sqrt{3}}{6}
Whakareatia te 2 ki te 3, ka 6.
\frac{5\left(\sqrt{3}\right)^{2}-3\sqrt{2}\sqrt{3}}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te 5\sqrt{3}-3\sqrt{2} ki te \sqrt{3}.
\frac{5\times 3-3\sqrt{2}\sqrt{3}}{6}
Ko te pūrua o \sqrt{3} ko 3.
\frac{15-3\sqrt{2}\sqrt{3}}{6}
Whakareatia te 5 ki te 3, ka 15.
\frac{15-3\sqrt{6}}{6}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.