Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{5\sqrt{3}-\sqrt{108}+\sqrt{27}}{3\sqrt{12}}
Tauwehea te 75=5^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 3} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{3}. Tuhia te pūtakerua o te 5^{2}.
\frac{5\sqrt{3}-6\sqrt{3}+\sqrt{27}}{3\sqrt{12}}
Tauwehea te 108=6^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{6^{2}\times 3} hei hua o ngā pūtake rua \sqrt{6^{2}}\sqrt{3}. Tuhia te pūtakerua o te 6^{2}.
\frac{-\sqrt{3}+\sqrt{27}}{3\sqrt{12}}
Pahekotia te 5\sqrt{3} me -6\sqrt{3}, ka -\sqrt{3}.
\frac{-\sqrt{3}+3\sqrt{3}}{3\sqrt{12}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{2\sqrt{3}}{3\sqrt{12}}
Pahekotia te -\sqrt{3} me 3\sqrt{3}, ka 2\sqrt{3}.
\frac{2\sqrt{3}}{3\times 2\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{3}}{6\sqrt{3}}
Whakareatia te 3 ki te 2, ka 6.
\frac{1}{3}
Me whakakore tahi te 2\sqrt{3} i te taurunga me te tauraro.