Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{12}\times 2\sqrt{18}}{\sqrt{8}}
Tuhia anō te whakawehe o ngā pūtake rua \frac{\sqrt{72}}{\sqrt{6}} hei pūtake rua o te whakawehenga \sqrt{\frac{72}{6}} ka mahi i te whakawehenga.
\frac{2\sqrt{3}\times 2\sqrt{18}}{\sqrt{8}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{4\sqrt{3}\sqrt{18}}{\sqrt{8}}
Whakareatia te 2 ki te 2, ka 4.
\frac{4\sqrt{3}\times 3\sqrt{2}}{\sqrt{8}}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{12\sqrt{3}\sqrt{2}}{\sqrt{8}}
Whakareatia te 4 ki te 3, ka 12.
\frac{12\sqrt{6}}{\sqrt{8}}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{12\sqrt{6}}{2\sqrt{2}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{6\sqrt{6}}{\sqrt{2}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{6\sqrt{6}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{6\sqrt{6}}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{6\sqrt{6}\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
\frac{6\sqrt{2}\sqrt{3}\sqrt{2}}{2}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{6\times 2\sqrt{3}}{2}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
6\sqrt{3}
Me whakakore te 2 me te 2.