Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{7}+2\sqrt{2}}{\sqrt{10}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\left(\sqrt{7}+2\sqrt{2}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}+2\sqrt{2}}{\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{\left(\sqrt{7}+2\sqrt{2}\right)\sqrt{10}}{10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{\sqrt{7}\sqrt{10}+2\sqrt{2}\sqrt{10}}{10}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{7}+2\sqrt{2} ki te \sqrt{10}.
\frac{\sqrt{70}+2\sqrt{2}\sqrt{10}}{10}
Hei whakarea \sqrt{7} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{70}+2\sqrt{2}\sqrt{2}\sqrt{5}}{10}
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
\frac{\sqrt{70}+2\times 2\sqrt{5}}{10}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{\sqrt{70}+4\sqrt{5}}{10}
Whakareatia te 2 ki te 2, ka 4.