Aromātai
12
Tauwehe
2^{2}\times 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}+\sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Whakaarohia te \left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{7-5}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Pūrua \sqrt{7}. Pūrua \sqrt{5}.
\frac{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Tangohia te 5 i te 7, ka 2.
\frac{\left(\sqrt{7}+\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Whakareatia te \sqrt{7}+\sqrt{5} ki te \sqrt{7}+\sqrt{5}, ka \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{7}\right)^{2}+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(\sqrt{7}+\sqrt{5}\right)^{2}.
\frac{7+2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Ko te pūrua o \sqrt{7} ko 7.
\frac{7+2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{7+2\sqrt{35}+5}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{12+2\sqrt{35}}{2}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Tāpirihia te 7 ki te 5, ka 12.
6+\sqrt{35}+\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}
Whakawehea ia wā o 12+2\sqrt{35} ki te 2, kia riro ko 6+\sqrt{35}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-\sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}
Whakaarohia te \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{7-5}
Pūrua \sqrt{7}. Pūrua \sqrt{5}.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}
Tangohia te 5 i te 7, ka 2.
6+\sqrt{35}+\frac{\left(\sqrt{7}-\sqrt{5}\right)^{2}}{2}
Whakareatia te \sqrt{7}-\sqrt{5} ki te \sqrt{7}-\sqrt{5}, ka \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{7}-\sqrt{5}\right)^{2}.
6+\sqrt{35}+\frac{7-2\sqrt{7}\sqrt{5}+\left(\sqrt{5}\right)^{2}}{2}
Ko te pūrua o \sqrt{7} ko 7.
6+\sqrt{35}+\frac{7-2\sqrt{35}+\left(\sqrt{5}\right)^{2}}{2}
Hei whakarea \sqrt{7} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
6+\sqrt{35}+\frac{7-2\sqrt{35}+5}{2}
Ko te pūrua o \sqrt{5} ko 5.
6+\sqrt{35}+\frac{12-2\sqrt{35}}{2}
Tāpirihia te 7 ki te 5, ka 12.
6+\sqrt{35}+6-\sqrt{35}
Whakawehea ia wā o 12-2\sqrt{35} ki te 2, kia riro ko 6-\sqrt{35}.
12+\sqrt{35}-\sqrt{35}
Tāpirihia te 6 ki te 6, ka 12.
12
Pahekotia te \sqrt{35} me -\sqrt{35}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}