Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{2\sqrt{15}}{8\sqrt{3}}
Tauwehea te 60=2^{2}\times 15. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 15} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{15}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{15}}{4\sqrt{3}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\sqrt{15}\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{15}}{4\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{15}\sqrt{3}}{4\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}\sqrt{5}\sqrt{3}}{4\times 3}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}}{4\times 3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3\sqrt{5}}{12}
Whakareatia te 4 ki te 3, ka 12.
\frac{1}{4}\sqrt{5}
Whakawehea te 3\sqrt{5} ki te 12, kia riro ko \frac{1}{4}\sqrt{5}.