Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
Whakareatia te \frac{\sqrt{6}-\sqrt{2}}{4} ki te \frac{\sqrt{6}-\sqrt{2}}{4}, ka \left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
Kia whakarewa i te \frac{\sqrt{6}-\sqrt{2}}{4} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakareatia te -2 ki te 2, ka -4.
\frac{6-4\sqrt{3}+2}{4^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8-4\sqrt{3}}{4^{2}}
Tāpirihia te 6 ki te 2, ka 8.
\frac{8-4\sqrt{3}}{16}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.