Aromātai
-\frac{\sqrt{3}}{4}+\frac{1}{2}\approx 0.066987298
Tauwehe
\frac{2 - \sqrt{3}}{4} = 0.0669872981077807
Tohaina
Kua tāruatia ki te papatopenga
\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}
Whakareatia te \frac{\sqrt{6}-\sqrt{2}}{4} ki te \frac{\sqrt{6}-\sqrt{2}}{4}, ka \left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4^{2}}
Kia whakarewa i te \frac{\sqrt{6}-\sqrt{2}}{4} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{6}-\sqrt{2}\right)^{2}.
\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Ko te pūrua o \sqrt{6} ko 6.
\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4^{2}}
Whakareatia te -2 ki te 2, ka -4.
\frac{6-4\sqrt{3}+2}{4^{2}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{8-4\sqrt{3}}{4^{2}}
Tāpirihia te 6 ki te 2, ka 8.
\frac{8-4\sqrt{3}}{16}
Tātaihia te 4 mā te pū o 2, kia riro ko 16.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}