Whakaoti mō t
t = \frac{2 \sqrt{3} + 3 \sqrt{2}}{6} \approx 1.28445705
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{6}}{\sqrt{6}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{6}}{\sqrt{6}t} mā te whakarea i te taurunga me te tauraro ki te \sqrt{6}.
\frac{\sqrt{6}\sqrt{6}}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Ko te pūrua o \sqrt{6} ko 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Whakaarohia te \left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{2-3}
Pūrua \sqrt{2}. Pūrua \sqrt{3}.
\frac{6}{6t}=\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{-1}
Tangohia te 3 i te 2, ka -1.
\frac{6}{6t}=-\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
\frac{6}{6t}=-\left(\sqrt{6}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{6} ki te \sqrt{2}-\sqrt{3}.
\frac{6}{6t}=-\left(\sqrt{2}\sqrt{3}\sqrt{2}-\sqrt{6}\sqrt{3}\right)
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{6}\sqrt{3}\right)
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
\frac{6}{6t}=-\left(2\sqrt{3}-\sqrt{3}\sqrt{2}\sqrt{3}\right)
Tauwehea te 6=3\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3\times 2} hei hua o ngā pūtake rua \sqrt{3}\sqrt{2}.
\frac{6}{6t}=-\left(2\sqrt{3}-3\sqrt{2}\right)
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{6}{6t}=-2\sqrt{3}+3\sqrt{2}
Hei kimi i te tauaro o 2\sqrt{3}-3\sqrt{2}, kimihia te tauaro o ia taurangi.
6=-2\sqrt{3}\times 6t+3\sqrt{2}\times 6t
Tē taea kia ōrite te tāupe t ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te 6t.
6=3\times 6\sqrt{2}t-2\times 6\sqrt{3}t
Whakaraupapatia anō ngā kīanga tau.
6=18\sqrt{2}t-12\sqrt{3}t
Mahia ngā whakarea.
18\sqrt{2}t-12\sqrt{3}t=6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(18\sqrt{2}-12\sqrt{3}\right)t=6
Pahekotia ngā kīanga tau katoa e whai ana i te t.
\frac{\left(18\sqrt{2}-12\sqrt{3}\right)t}{18\sqrt{2}-12\sqrt{3}}=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Whakawehea ngā taha e rua ki te 18\sqrt{2}-12\sqrt{3}.
t=\frac{6}{18\sqrt{2}-12\sqrt{3}}
Mā te whakawehe ki te 18\sqrt{2}-12\sqrt{3} ka wetekia te whakareanga ki te 18\sqrt{2}-12\sqrt{3}.
t=\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}
Whakawehe 6 ki te 18\sqrt{2}-12\sqrt{3}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}