Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4\times 4}
Me whakarea te \frac{\sqrt{6}+\sqrt{2}}{4} ki te \frac{\sqrt{6}-\sqrt{2}}{4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}{4\times 4}
Whakaarohia te \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{6-\left(\sqrt{2}\right)^{2}}{4\times 4}
Ko te pūrua o \sqrt{6} ko 6.
\frac{6-2}{4\times 4}
Ko te pūrua o \sqrt{2} ko 2.
\frac{4}{4\times 4}
Tangohia te 2 i te 6, ka 4.
\frac{4}{16}
Whakareatia te 4 ki te 4, ka 16.
\frac{1}{4}
Whakahekea te hautanga \frac{4}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.