Aromātai
\frac{59\sqrt{29}+5-\sqrt{295}-\sqrt{8555}}{54}\approx 3.945479937
Tohaina
Kua tāruatia ki te papatopenga
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{59\times 29}+\sqrt{5\times 29}}
Whakareatia te 5 ki te 29, ka 145.
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{5\times 29}}
Whakareatia te 59 ki te 29, ka 1711.
\frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{145}}
Whakareatia te 5 ki te 29, ka 145.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{\left(\sqrt{1711}+\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}
Whakangāwaritia te tauraro o \frac{29\sqrt{59}-\sqrt{145}}{\sqrt{1711}+\sqrt{145}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{1711}-\sqrt{145}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{\left(\sqrt{1711}\right)^{2}-\left(\sqrt{145}\right)^{2}}
Whakaarohia te \left(\sqrt{1711}+\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{1711-145}
Pūrua \sqrt{1711}. Pūrua \sqrt{145}.
\frac{\left(29\sqrt{59}-\sqrt{145}\right)\left(\sqrt{1711}-\sqrt{145}\right)}{1566}
Tangohia te 145 i te 1711, ka 1566.
\frac{29\sqrt{59}\sqrt{1711}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 29\sqrt{59}-\sqrt{145} ki ia tau o \sqrt{1711}-\sqrt{145}.
\frac{29\sqrt{59}\sqrt{59}\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Tauwehea te 1711=59\times 29. Tuhia anō te pūtake rua o te hua \sqrt{59\times 29} hei hua o ngā pūtake rua \sqrt{59}\sqrt{29}.
\frac{29\times 59\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Whakareatia te \sqrt{59} ki te \sqrt{59}, ka 59.
\frac{1711\sqrt{29}-29\sqrt{59}\sqrt{145}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Whakareatia te 29 ki te 59, ka 1711.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{145}\sqrt{1711}+\left(\sqrt{145}\right)^{2}}{1566}
Hei whakarea \sqrt{59} me \sqrt{145}, whakareatia ngā tau i raro i te pūtake rua.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{248095}+\left(\sqrt{145}\right)^{2}}{1566}
Hei whakarea \sqrt{145} me \sqrt{1711}, whakareatia ngā tau i raro i te pūtake rua.
\frac{1711\sqrt{29}-29\sqrt{8555}-\sqrt{248095}+145}{1566}
Ko te pūrua o \sqrt{145} ko 145.
\frac{1711\sqrt{29}-29\sqrt{8555}-29\sqrt{295}+145}{1566}
Tauwehea te 248095=29^{2}\times 295. Tuhia anō te pūtake rua o te hua \sqrt{29^{2}\times 295} hei hua o ngā pūtake rua \sqrt{29^{2}}\sqrt{295}. Tuhia te pūtakerua o te 29^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}