Aromātai
\text{Indeterminate}
Tauwehe
\text{Indeterminate}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3136-46^{2}}}{0\times 25\sqrt{10}}
Tātaihia te 56 mā te pū o 2, kia riro ko 3136.
\frac{\sqrt{3136-2116}}{0\times 25\sqrt{10}}
Tātaihia te 46 mā te pū o 2, kia riro ko 2116.
\frac{\sqrt{1020}}{0\times 25\sqrt{10}}
Tangohia te 2116 i te 3136, ka 1020.
\frac{2\sqrt{255}}{0\times 25\sqrt{10}}
Tauwehea te 1020=2^{2}\times 255. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 255} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{255}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{255}}{0\sqrt{10}}
Whakareatia te 0 ki te 25, ka 0.
\frac{2\sqrt{255}}{0}
Ko te tau i whakarea ki te kore ka hua ko te kore.
\text{Indeterminate}\sqrt{255}
Whakawehea te 2\sqrt{255} ki te 0, kia riro ko \text{Indeterminate}\sqrt{255}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}