Aromātai
4\sqrt{102}\approx 40.398019753
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3136-46^{2}}}{0.25\sqrt{10}}
Tātaihia te 56 mā te pū o 2, kia riro ko 3136.
\frac{\sqrt{3136-2116}}{0.25\sqrt{10}}
Tātaihia te 46 mā te pū o 2, kia riro ko 2116.
\frac{\sqrt{1020}}{0.25\sqrt{10}}
Tangohia te 2116 i te 3136, ka 1020.
\frac{2\sqrt{255}}{0.25\sqrt{10}}
Tauwehea te 1020=2^{2}\times 255. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 255} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{255}. Tuhia te pūtakerua o te 2^{2}.
\frac{2\sqrt{255}\sqrt{10}}{0.25\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2\sqrt{255}}{0.25\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{2\sqrt{255}\sqrt{10}}{0.25\times 10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{2\sqrt{2550}}{0.25\times 10}
Hei whakarea \sqrt{255} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{2\sqrt{2550}}{2.5}
Whakareatia te 0.25 ki te 10, ka 2.5.
\frac{2\times 5\sqrt{102}}{2.5}
Tauwehea te 2550=5^{2}\times 102. Tuhia anō te pūtake rua o te hua \sqrt{5^{2}\times 102} hei hua o ngā pūtake rua \sqrt{5^{2}}\sqrt{102}. Tuhia te pūtakerua o te 5^{2}.
\frac{10\sqrt{102}}{2.5}
Whakareatia te 2 ki te 5, ka 10.
4\sqrt{102}
Whakawehea te 10\sqrt{102} ki te 2.5, kia riro ko 4\sqrt{102}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}