Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
Whakangāwaritia te tauraro o \frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te 2\sqrt{2}-\sqrt{5}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Whakaarohia te \left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Whakarohaina te \left(2\sqrt{2}\right)^{2}.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Ko te pūrua o \sqrt{2} ko 2.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
Whakareatia te 4 ki te 2, ka 8.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
Tangohia te 5 i te 8, ka 3.
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
Tuhia te \frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} hei hautanga kotahi.
\frac{\sqrt{5}}{3}
Me whakakore tahi te -\sqrt{5}+2\sqrt{2} i te taurunga me te tauraro.