Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{4\sqrt{3}}{\sqrt{64}}\times \frac{2}{\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{4\sqrt{3}}{8}\times \frac{2}{\sqrt{3}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
\frac{1}{2}\sqrt{3}\times \frac{2}{\sqrt{3}}
Whakawehea te 4\sqrt{3} ki te 8, kia riro ko \frac{1}{2}\sqrt{3}.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{2\times 3}\sqrt{3}
Me whakarea te \frac{1}{2} ki te \frac{2\sqrt{3}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{3}}{3}\sqrt{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\sqrt{3}\sqrt{3}}{3}
Tuhia te \frac{\sqrt{3}}{3}\sqrt{3} hei hautanga kotahi.
\frac{3}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
1
Whakawehea te 3 ki te 3, kia riro ko 1.