Aromātai
1
Tauwehe
1
Tohaina
Kua tāruatia ki te papatopenga
\frac{4\sqrt{3}}{\sqrt{64}}\times \frac{2}{\sqrt{3}}
Tauwehea te 48=4^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 3} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{3}. Tuhia te pūtakerua o te 4^{2}.
\frac{4\sqrt{3}}{8}\times \frac{2}{\sqrt{3}}
Tātaitia te pūtakerua o 64 kia tae ki 8.
\frac{1}{2}\sqrt{3}\times \frac{2}{\sqrt{3}}
Whakawehea te 4\sqrt{3} ki te 8, kia riro ko \frac{1}{2}\sqrt{3}.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{2}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{1}{2}\sqrt{3}\times \frac{2\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{2\sqrt{3}}{2\times 3}\sqrt{3}
Me whakarea te \frac{1}{2} ki te \frac{2\sqrt{3}}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{3}}{3}\sqrt{3}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{\sqrt{3}\sqrt{3}}{3}
Tuhia te \frac{\sqrt{3}}{3}\sqrt{3} hei hautanga kotahi.
\frac{3}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
1
Whakawehea te 3 ki te 3, kia riro ko 1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}