Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
Tātaitia te pūtakerua o 4 kia tae ki 2.
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{\sqrt{2}abc})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc}.
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}})
Me whakakore tahi te abc i te taurunga me te tauraro.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
Whakangāwaritia te tauraro o \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{2})
Ko te pūrua o \sqrt{2} ko 2.
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Whakamahia te āhuatanga tohatoha hei whakarea te -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2 ki te \sqrt{2}.
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Tauwehea te 6=2\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2\times 3} hei hua o ngā pūtake rua \sqrt{2}\sqrt{3}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Tauwehea te 10=2\times 5. Tuhia anō te pūtake rua o te hua \sqrt{2\times 5} hei hua o ngā pūtake rua \sqrt{2}\sqrt{5}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{4}\sqrt{5}+2\sqrt{2}}{2})
Whakareatia te \sqrt{2} ki te \sqrt{2}, ka 2.
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}\right)
Whakaarohia te -2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{4}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}}. Tauwehea te 2.
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}
Me tuhi anō te kīanga whakatauwehe katoa. Whakarūnātia.