Aromātai
\frac{1}{11}\approx 0.090909091
Tauwehe
\frac{1}{11} = 0.09090909090909091
Tohaina
Kua tāruatia ki te papatopenga
\frac{2+\sqrt{81}}{121}
Tātaitia te pūtakerua o 4 kia tae ki 2.
\frac{2+9}{121}
Tātaitia te pūtakerua o 81 kia tae ki 9.
\frac{11}{121}
Tāpirihia te 2 ki te 9, ka 11.
\frac{1}{11}
Whakahekea te hautanga \frac{11}{121} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}