Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{35}-\sqrt{21}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{35}-\sqrt{21}}{\sqrt{7}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}.
\frac{\left(\sqrt{35}-\sqrt{21}\right)\sqrt{7}}{7}
Ko te pūrua o \sqrt{7} ko 7.
\frac{\sqrt{35}\sqrt{7}-\sqrt{21}\sqrt{7}}{7}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{35}-\sqrt{21} ki te \sqrt{7}.
\frac{\sqrt{7}\sqrt{5}\sqrt{7}-\sqrt{21}\sqrt{7}}{7}
Tauwehea te 35=7\times 5. Tuhia anō te pūtake rua o te hua \sqrt{7\times 5} hei hua o ngā pūtake rua \sqrt{7}\sqrt{5}.
\frac{7\sqrt{5}-\sqrt{21}\sqrt{7}}{7}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\frac{7\sqrt{5}-\sqrt{7}\sqrt{3}\sqrt{7}}{7}
Tauwehea te 21=7\times 3. Tuhia anō te pūtake rua o te hua \sqrt{7\times 3} hei hua o ngā pūtake rua \sqrt{7}\sqrt{3}.
\frac{7\sqrt{5}-7\sqrt{3}}{7}
Whakareatia te \sqrt{7} ki te \sqrt{7}, ka 7.
\sqrt{5}-\sqrt{3}
Whakawehea ia wā o 7\sqrt{5}-7\sqrt{3} ki te 7, kia riro ko \sqrt{5}-\sqrt{3}.