Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{3.2}-\sqrt{1.8}\right)\sqrt{10}}{\left(\sqrt{10}\right)^{2}}
Whakangāwaritia te tauraro o \frac{\sqrt{3.2}-\sqrt{1.8}}{\sqrt{10}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{10}.
\frac{\left(\sqrt{3.2}-\sqrt{1.8}\right)\sqrt{10}}{10}
Ko te pūrua o \sqrt{10} ko 10.
\frac{\sqrt{3.2}\sqrt{10}-\sqrt{1.8}\sqrt{10}}{10}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3.2}-\sqrt{1.8} ki te \sqrt{10}.
\frac{\sqrt{32}-\sqrt{1.8}\sqrt{10}}{10}
Hei whakarea \sqrt{3.2} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\sqrt{32}-\sqrt{18}}{10}
Hei whakarea \sqrt{1.8} me \sqrt{10}, whakareatia ngā tau i raro i te pūtake rua.
\frac{4\sqrt{2}-\sqrt{18}}{10}
Tauwehea te 32=4^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{4^{2}\times 2} hei hua o ngā pūtake rua \sqrt{4^{2}}\sqrt{2}. Tuhia te pūtakerua o te 4^{2}.
\frac{4\sqrt{2}-3\sqrt{2}}{10}
Tauwehea te 18=3^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 2} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{2}. Tuhia te pūtakerua o te 3^{2}.
\frac{\sqrt{2}}{10}
Pahekotia te 4\sqrt{2} me -3\sqrt{2}, ka \sqrt{2}.