Aromātai
\frac{2\sqrt{3}}{3}-\frac{2\sqrt{2}}{5}\approx 0.589015113
Tauwehe
\frac{2 {(5 \sqrt{3} - 3 \sqrt{2})}}{15} = 0.5890151134300133
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { \sqrt { 3 } 2 } { 3 } - \frac { \sqrt { 8 } } { 5 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\sqrt{3}}{3}-\frac{2\sqrt{2}}{5}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
\frac{5\times 2\sqrt{3}}{15}-\frac{3\times 2\sqrt{2}}{15}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 3 me 5 ko 15. Whakareatia \frac{2\sqrt{3}}{3} ki te \frac{5}{5}. Whakareatia \frac{2\sqrt{2}}{5} ki te \frac{3}{3}.
\frac{5\times 2\sqrt{3}-3\times 2\sqrt{2}}{15}
Tā te mea he rite te tauraro o \frac{5\times 2\sqrt{3}}{15} me \frac{3\times 2\sqrt{2}}{15}, me tango rāua mā te tango i ō raua taurunga.
\frac{10\sqrt{3}-6\sqrt{2}}{15}
Mahia ngā whakarea i roto o 5\times 2\sqrt{3}-3\times 2\sqrt{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}