Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{3}-5}{\sqrt{7}+5} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Whakaarohia te \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
Pūrua \sqrt{7}. Pūrua 5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
Tangohia te 25 i te 7, ka -18.
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{3}-5 ki ia tau o \sqrt{7}-5.
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
Me whakarea tahi te taurunga me te tauraro ki te -1.