Aromātai
\frac{5\sqrt{3}+5\sqrt{7}-\sqrt{21}-25}{18}\approx -0.427420283
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{3}-5}{\sqrt{7}+5} mā te whakarea i te taurunga me te tauraro ki te \sqrt{7}-5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{\left(\sqrt{7}\right)^{2}-5^{2}}
Whakaarohia te \left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{7-25}
Pūrua \sqrt{7}. Pūrua 5.
\frac{\left(\sqrt{3}-5\right)\left(\sqrt{7}-5\right)}{-18}
Tangohia te 25 i te 7, ka -18.
\frac{\sqrt{3}\sqrt{7}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{3}-5 ki ia tau o \sqrt{7}-5.
\frac{\sqrt{21}-5\sqrt{3}-5\sqrt{7}+25}{-18}
Hei whakarea \sqrt{3} me \sqrt{7}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{21}+5\sqrt{3}+5\sqrt{7}-25}{18}
Me whakarea tahi te taurunga me te tauraro ki te -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}