Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{\left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right)}
Whakangāwaritia te tauraro o \frac{\sqrt{3}-3}{\sqrt{2}+3} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}-3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{\left(\sqrt{2}\right)^{2}-3^{2}}
Whakaarohia te \left(\sqrt{2}+3\right)\left(\sqrt{2}-3\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{2-9}
Pūrua \sqrt{2}. Pūrua 3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{2}-3\right)}{-7}
Tangohia te 9 i te 2, ka -7.
\frac{\sqrt{3}\sqrt{2}-3\sqrt{3}-3\sqrt{2}+9}{-7}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o \sqrt{3}-3 ki ia tau o \sqrt{2}-3.
\frac{\sqrt{6}-3\sqrt{3}-3\sqrt{2}+9}{-7}
Hei whakarea \sqrt{3} me \sqrt{2}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-\sqrt{6}+3\sqrt{3}+3\sqrt{2}-9}{7}
Me whakarea tahi te taurunga me te tauraro ki te -1.