Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}-1}{\sqrt{3}+1}\times 1
Whakawehea te \sqrt{3}+1 ki te \sqrt{3}+1, kia riro ko 1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\times 1
Whakangāwaritia te tauraro o \frac{\sqrt{3}-1}{\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\times 1
Whakaarohia te \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}\times 1
Pūrua \sqrt{3}. Pūrua 1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}\times 1
Tangohia te 1 i te 3, ka 2.
\frac{\left(\sqrt{3}-1\right)^{2}}{2}\times 1
Whakareatia te \sqrt{3}-1 ki te \sqrt{3}-1, ka \left(\sqrt{3}-1\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}\times 1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{3-2\sqrt{3}+1}{2}\times 1
Ko te pūrua o \sqrt{3} ko 3.
\frac{4-2\sqrt{3}}{2}\times 1
Tāpirihia te 3 ki te 1, ka 4.
\left(2-\sqrt{3}\right)\times 1
Whakawehea ia wā o 4-2\sqrt{3} ki te 2, kia riro ko 2-\sqrt{3}.
2-\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te 2-\sqrt{3} ki te 1.