Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=a+b\sqrt{3}
Whakangāwaritia te tauraro o \frac{\sqrt{3}-1}{\sqrt{3}+1} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}-1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}=a+b\sqrt{3}
Whakaarohia te \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}=a+b\sqrt{3}
Pūrua \sqrt{3}. Pūrua 1.
\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}=a+b\sqrt{3}
Tangohia te 1 i te 3, ka 2.
\frac{\left(\sqrt{3}-1\right)^{2}}{2}=a+b\sqrt{3}
Whakareatia te \sqrt{3}-1 ki te \sqrt{3}-1, ka \left(\sqrt{3}-1\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}=a+b\sqrt{3}
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(\sqrt{3}-1\right)^{2}.
\frac{3-2\sqrt{3}+1}{2}=a+b\sqrt{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{4-2\sqrt{3}}{2}=a+b\sqrt{3}
Tāpirihia te 3 ki te 1, ka 4.
2-\sqrt{3}=a+b\sqrt{3}
Whakawehea ia wā o 4-2\sqrt{3} ki te 2, kia riro ko 2-\sqrt{3}.
a+b\sqrt{3}=2-\sqrt{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
b\sqrt{3}=2-\sqrt{3}-a
Tangohia te a mai i ngā taha e rua.
\sqrt{3}b=-a+2-\sqrt{3}
He hanga arowhānui tō te whārite.
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
Whakawehea ngā taha e rua ki te \sqrt{3}.
b=\frac{-a+2-\sqrt{3}}{\sqrt{3}}
Mā te whakawehe ki te \sqrt{3} ka wetekia te whakareanga ki te \sqrt{3}.
b=\frac{\sqrt{3}\left(-a+2-\sqrt{3}\right)}{3}
Whakawehe -\sqrt{3}-a+2 ki te \sqrt{3}.