Aromātai
\frac{3\sqrt{3}x\left(16-x\right)}{8}
Tauwehe
\frac{3\sqrt{3}x\left(16-x\right)}{8}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { \sqrt { 3 } } { 4 } x ( - \frac { 3 } { 2 } x + 24 )
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}x+24\right)
Tuhia te \frac{\sqrt{3}}{4}x hei hautanga kotahi.
\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}\right)x+24\times \frac{\sqrt{3}x}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{\sqrt{3}x}{4} ki te -\frac{3}{2}x+24.
\frac{-\sqrt{3}x\times 3}{4\times 2}x+24\times \frac{\sqrt{3}x}{4}
Me whakarea te \frac{\sqrt{3}x}{4} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+24\times \frac{\sqrt{3}x}{4}
Tuhia te \frac{-\sqrt{3}x\times 3}{4\times 2}x hei hautanga kotahi.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+6\sqrt{3}x
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 24 me te 4.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+\frac{6\sqrt{3}x\times 4\times 2}{4\times 2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6\sqrt{3}x ki te \frac{4\times 2}{4\times 2}.
\frac{-\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2}{4\times 2}
Tā te mea he rite te tauraro o \frac{-\sqrt{3}x\times 3x}{4\times 2} me \frac{6\sqrt{3}x\times 4\times 2}{4\times 2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{4\times 2}
Mahia ngā whakarea i roto o -\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2.
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{8}
Whakarohaina te 4\times 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}