Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}x+24\right)
Tuhia te \frac{\sqrt{3}}{4}x hei hautanga kotahi.
\frac{\sqrt{3}x}{4}\left(-\frac{3}{2}\right)x+24\times \frac{\sqrt{3}x}{4}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{\sqrt{3}x}{4} ki te -\frac{3}{2}x+24.
\frac{-\sqrt{3}x\times 3}{4\times 2}x+24\times \frac{\sqrt{3}x}{4}
Me whakarea te \frac{\sqrt{3}x}{4} ki te -\frac{3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+24\times \frac{\sqrt{3}x}{4}
Tuhia te \frac{-\sqrt{3}x\times 3}{4\times 2}x hei hautanga kotahi.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+6\sqrt{3}x
Whakakorea atu te tauwehe pūnoa nui rawa 4 i roto i te 24 me te 4.
\frac{-\sqrt{3}x\times 3x}{4\times 2}+\frac{6\sqrt{3}x\times 4\times 2}{4\times 2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 6\sqrt{3}x ki te \frac{4\times 2}{4\times 2}.
\frac{-\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2}{4\times 2}
Tā te mea he rite te tauraro o \frac{-\sqrt{3}x\times 3x}{4\times 2} me \frac{6\sqrt{3}x\times 4\times 2}{4\times 2}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{4\times 2}
Mahia ngā whakarea i roto o -\sqrt{3}x\times 3x+6\sqrt{3}x\times 4\times 2.
\frac{-3\sqrt{3}x^{2}+48\sqrt{3}x}{8}
Whakarohaina te 4\times 2.