Aromātai
8\sqrt{3}-12\approx 1.856406461
Tohaina
Kua tāruatia ki te papatopenga
6\times \frac{\sqrt{3}}{4}\left(\frac{2\times 3}{3}-\frac{2\sqrt{3}}{3}\right)^{2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{3}{3}.
6\times \frac{\sqrt{3}}{4}\times \left(\frac{2\times 3-2\sqrt{3}}{3}\right)^{2}
Tā te mea he rite te tauraro o \frac{2\times 3}{3} me \frac{2\sqrt{3}}{3}, me tango rāua mā te tango i ō raua taurunga.
6\times \frac{\sqrt{3}}{4}\times \left(\frac{6-2\sqrt{3}}{3}\right)^{2}
Mahia ngā whakarea i roto o 2\times 3-2\sqrt{3}.
6\times \frac{\sqrt{3}}{4}\times \frac{\left(6-2\sqrt{3}\right)^{2}}{3^{2}}
Kia whakarewa i te \frac{6-2\sqrt{3}}{3} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{6\sqrt{3}}{4}\times \frac{\left(6-2\sqrt{3}\right)^{2}}{3^{2}}
Tuhia te 6\times \frac{\sqrt{3}}{4} hei hautanga kotahi.
\frac{6\sqrt{3}\left(6-2\sqrt{3}\right)^{2}}{4\times 3^{2}}
Me whakarea te \frac{6\sqrt{3}}{4} ki te \frac{\left(6-2\sqrt{3}\right)^{2}}{3^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\sqrt{3}\left(-2\sqrt{3}+6\right)^{2}}{2\times 3}
Me whakakore tahi te 2\times 3 i te taurunga me te tauraro.
\frac{\sqrt{3}\left(4\left(\sqrt{3}\right)^{2}-24\sqrt{3}+36\right)}{2\times 3}
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(-2\sqrt{3}+6\right)^{2}.
\frac{\sqrt{3}\left(4\times 3-24\sqrt{3}+36\right)}{2\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{\sqrt{3}\left(12-24\sqrt{3}+36\right)}{2\times 3}
Whakareatia te 4 ki te 3, ka 12.
\frac{\sqrt{3}\left(48-24\sqrt{3}\right)}{2\times 3}
Tāpirihia te 12 ki te 36, ka 48.
\frac{\sqrt{3}\left(48-24\sqrt{3}\right)}{6}
Whakareatia te 2 ki te 3, ka 6.
\frac{48\sqrt{3}-24\left(\sqrt{3}\right)^{2}}{6}
Whakamahia te āhuatanga tohatoha hei whakarea te \sqrt{3} ki te 48-24\sqrt{3}.
\frac{48\sqrt{3}-24\times 3}{6}
Ko te pūrua o \sqrt{3} ko 3.
\frac{48\sqrt{3}-72}{6}
Whakareatia te -24 ki te 3, ka -72.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}