Aromātai
-1
Tohaina
Kua tāruatia ki te papatopenga
\frac{\sqrt{3}}{\sqrt{3}-\cos(30)}-27^{\frac{1}{3}}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\frac{\sqrt{3}}{\sqrt{3}-\frac{\sqrt{3}}{2}}-27^{\frac{1}{3}}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}}-27^{\frac{1}{3}}
Pahekotia te \sqrt{3} me -\frac{\sqrt{3}}{2}, ka \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\left(\sqrt{3}\right)^{2}}-27^{\frac{1}{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3}{\frac{3}{2}}-27^{\frac{1}{3}}
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
3\times \frac{2}{3}-27^{\frac{1}{3}}
Whakawehe 3 ki te \frac{3}{2} mā te whakarea 3 ki te tau huripoki o \frac{3}{2}.
2-27^{\frac{1}{3}}
Whakareatia te 3 ki te \frac{2}{3}, ka 2.
2-3
Tātaihia te 27 mā te pū o \frac{1}{3}, kia riro ko 3.
-1
Tangohia te 3 i te 2, ka -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}