Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Tohaina

\frac{\sqrt{3}}{\sqrt{3}-\cos(30)}-27^{\frac{1}{3}}
Tīkina te uara \tan(60) mai i te ripanga uara pākoki.
\frac{\sqrt{3}}{\sqrt{3}-\frac{\sqrt{3}}{2}}-27^{\frac{1}{3}}
Tīkina te uara \cos(30) mai i te ripanga uara pākoki.
\frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}}-27^{\frac{1}{3}}
Pahekotia te \sqrt{3} me -\frac{\sqrt{3}}{2}, ka \frac{1}{2}\sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\left(\sqrt{3}\right)^{2}}-27^{\frac{1}{3}}
Whakangāwaritia te tauraro o \frac{\sqrt{3}}{\frac{1}{2}\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{\sqrt{3}\sqrt{3}}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3}{\frac{1}{2}\times 3}-27^{\frac{1}{3}}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{3}{\frac{3}{2}}-27^{\frac{1}{3}}
Whakareatia te \frac{1}{2} ki te 3, ka \frac{3}{2}.
3\times \frac{2}{3}-27^{\frac{1}{3}}
Whakawehe 3 ki te \frac{3}{2} mā te whakarea 3 ki te tau huripoki o \frac{3}{2}.
2-27^{\frac{1}{3}}
Whakareatia te 3 ki te \frac{2}{3}, ka 2.
2-3
Tātaihia te 27 mā te pū o \frac{1}{3}, kia riro ko 3.
-1
Tangohia te 3 i te 2, ka -1.